中文版 | English
题名

PARAMETER ESTIMATION OF BLACK-SCHOLES MODEL BY REINFORCEMENT LEARNING

其他题名
用强化学习估计 Black-Scholes 模型中的参数
姓名
姓名拼音
XU Wen
学号
12032003
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
熊捷
导师单位
数学系
论文答辩日期
2022-05-09
论文提交日期
2022-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

In the process of pricing options with the Black-Scholes formula, it is necessary to know the volatility of the underlying asset. By studying the method of estimating the parameters in the Black-Scholes model, we can provide a better volatility estimation when we apply the Black-Scholes option pricing formula.

During the research process, we have established a reinforcement learning model, and after theoretical analysis, we give the setting form of rewards and propose to use the  TD(0)  algorithm to estimate the volatility and the expected return. The algorithm's convergence and the effectiveness of the reinforcement learning method are demonstrated.


In the case study, we give some known Black-Scholes models and sample their  trajectories as research data. Then the  TD(0) algorithm is used to estimate the expected return and the  volatility. The data shows that after setting the appropriate reward function and discount factor, the reinforcement learning method can effectively estimate the volatility and expected return.

We also use the maximum likelihood estimation method to estimate    the volatility and the expected return.  By analyzing the estimation characteristics of these two methods and comparing their estimation results, we find that for the  Black-Scholes model, our method is more advantageous to estimate  the expected return.

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1,BLACK F, SCHOLES M. The Pricing of Options and Corporate Liabilities[J]. The Journal of Political Economy, 1973, 81(3),637–654.3.
[2] BATES, D. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options[J]. The Review of Financial Studies, 1996, Vol. 9: No. 1, 69-107.
[3] S.SUTTON R, G.BARTO A. Reinforcement Learning[M]. Westchester Publishing Services, 2018: 25-41.
[4] BORKAR V S. STOCHASTIC APPROXIMATION : A DYNAMICAL SYSTEMS VIEW-POINT[M]. Mumbai: Tata Institute of Fundamental Research, Mumbai, 2008: 1-16.
[5] DAYAN P. The convergence of TD(𝜆) for general 𝜆[J]. Machine Learning, 1992: 8 (3–4):341–362.
[6] SUTTON R S. Learning to Predict by the Methods of Temporal Differences[J]. Machine Learn-ing, February 4. 1988: 3:9-44.
[7] WATKINS, C.J.C.H. Learning from Delayed Rewards[D]. University of Cambridge. EThOSuk.bl.ethos.330022, 1989.
[8] CHRIS W, PETER D. Q-learning[J]. Machine Learning, 1992: 279–292.
[9] LUU R. Convergence of Q-learning: a simple proof[J]. Francisco S. MeloInstitute for Systems and Robotics,Instituto Superior Técnico,Lisboa, PORTUGAL, 2001.
[10] ENGLE, F R. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation[J]. Econometrica, 1982: 987–1007.
[11] BOLLERSLEV T. Generalized Autoregressive Conditional Heteroskedasticity[J]. Journal of Econometrics, 1986: 307-327.
[12] KHALED K, SAMIA M. Estimation of the Parameters of the Stochastic Differential Equations Black-Scholes Model Share Price of Gold[J]. Journal of Mathematics and Statistics, 2010, 6(4): 421-424.
[13] GROSS P. Parameter Estimation for Black-Scholes Equation[D]. Advisor: Dr. Jialing Dai Final Report URA, 2006.
[14] XIONG J. An Introduction to Stochastic Filtering Theory[M]. New York: Oxford University Press Inc, 2008: 15-41.
[15] C.HULL J. OPTIONS, FUTURES, AND OTHER DERIVATIVES[M]. University of Toronto,ninth edition, 2014: 321-350.
[16] DOYA K. Reinforcement Learning In Continuous Time and Space[J]. Neural Computation,2000, 12(1): 219-245.
[17] LIN X, WANG M, LAI C. A modification term for Black-Scholes model based on discrepancy calibrated with real market data[J]. Data Science in Finance and Economics, 2021: DSFE, 1(4):313–326.45
[18] WANG H, ZHOU X Y. Continuous-time mean–variance portfolio selection: A reinforcement learning framework[J]. Mathematical Finance, 2020, DOI: 10.1111/mafi.12281.
[19] CHOWDHURY R, MAHDY M, TANISHA NOURIN ALAM E A. Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model[J]. Physica A 124444, 2020, A 555.
[20] CHI S. A differential neural network learns stochastic differential equations and the Black-Scholes equation for pricing multi-asset options[D]. Department of Computer Science, Kyung-sung University, Busan 48434, South Korea, 2020.
[21] VAIDYA T, MURGUIA C, PILIOURAS G. Learning agents in Black–Scholes financial markets[J]. Mathematical Finance, 2020, R. Soc. Open Sci. 7: 201188.
[22] HALPERIN I. Q-Learner in the Black-Scholes(-Merton) Worlds[J]. Computational Finance(q-fin.CP); Machine Learning (cs.LG), 2019, Vol. 9.
[23] BAYRAM M, BUYUKOZ G O, PARTAL T. Parameter Estimation in a Black-Scholes Model[J]. Thermal Science, 2018, 22: 117-122.
[24] SHAHRABI J, ADIBI M A, MAHOOTCHI M. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling[J]. Computers Industrial Engineering, 2017, 110:75-82.
[25] TEKA K H. Parameter Estimation Of The Black-Scholes-Merton Model[D]. KANSAS STATE UNIVERSITY Manhattan, Kansas, 2013.
[26] HAIQIU L. Perspective of Expanded Black- Scholes Model and Estimation of Parameter[J].Soft Science, 2005, 110.
[27] NA H S. Black-Scholes Option Pricing Using Three Volatility Models: Moving Average,GARCH(1, 1), and Adaptive GARCH[D]. Rotterdam, Netherlands: Erasmus University, August2003.
[28] FOUQUE J P, PAPANICOLAOU G, SIRCAR K R. Stochastic Volatility Correction to Black-Scholes. NC State University[D]. NC State University, January 2000.
[29] EVEN-DAR E, MANSOUR Y. Learning Rates for Q-learning[J]. Journal of Machine Learning Research, 2017, 110: 75-82.
[30] PARKINSON M. The Extreme Value Method for Estimating the Variance of the Rate of Return [J]. The Journal of Business, February 1980: 61-65.

所在学位评定分委会
数学系
国内图书分类号
F830.91
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353159
专题理学院_数学系
推荐引用方式
GB/T 7714
Xu W. PARAMETER ESTIMATION OF BLACK-SCHOLES MODEL BY REINFORCEMENT LEARNING[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032003-徐文-数学系.pdf(5432KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐文]的文章
百度学术
百度学术中相似的文章
[徐文]的文章
必应学术
必应学术中相似的文章
[徐文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。