[1,BLACK F, SCHOLES M. The Pricing of Options and Corporate Liabilities[J]. The Journal of Political Economy, 1973, 81(3),637–654.3.
[2] BATES, D. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options[J]. The Review of Financial Studies, 1996, Vol. 9: No. 1, 69-107.
[3] S.SUTTON R, G.BARTO A. Reinforcement Learning[M]. Westchester Publishing Services, 2018: 25-41.
[4] BORKAR V S. STOCHASTIC APPROXIMATION : A DYNAMICAL SYSTEMS VIEW-POINT[M]. Mumbai: Tata Institute of Fundamental Research, Mumbai, 2008: 1-16.
[5] DAYAN P. The convergence of TD(𝜆) for general 𝜆[J]. Machine Learning, 1992: 8 (3–4):341–362.
[6] SUTTON R S. Learning to Predict by the Methods of Temporal Differences[J]. Machine Learn-ing, February 4. 1988: 3:9-44.
[7] WATKINS, C.J.C.H. Learning from Delayed Rewards[D]. University of Cambridge. EThOSuk.bl.ethos.330022, 1989.
[8] CHRIS W, PETER D. Q-learning[J]. Machine Learning, 1992: 279–292.
[9] LUU R. Convergence of Q-learning: a simple proof[J]. Francisco S. MeloInstitute for Systems and Robotics,Instituto Superior Técnico,Lisboa, PORTUGAL, 2001.
[10] ENGLE, F R. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation[J]. Econometrica, 1982: 987–1007.
[11] BOLLERSLEV T. Generalized Autoregressive Conditional Heteroskedasticity[J]. Journal of Econometrics, 1986: 307-327.
[12] KHALED K, SAMIA M. Estimation of the Parameters of the Stochastic Differential Equations Black-Scholes Model Share Price of Gold[J]. Journal of Mathematics and Statistics, 2010, 6(4): 421-424.
[13] GROSS P. Parameter Estimation for Black-Scholes Equation[D]. Advisor: Dr. Jialing Dai Final Report URA, 2006.
[14] XIONG J. An Introduction to Stochastic Filtering Theory[M]. New York: Oxford University Press Inc, 2008: 15-41.
[15] C.HULL J. OPTIONS, FUTURES, AND OTHER DERIVATIVES[M]. University of Toronto,ninth edition, 2014: 321-350.
[16] DOYA K. Reinforcement Learning In Continuous Time and Space[J]. Neural Computation,2000, 12(1): 219-245.
[17] LIN X, WANG M, LAI C. A modification term for Black-Scholes model based on discrepancy calibrated with real market data[J]. Data Science in Finance and Economics, 2021: DSFE, 1(4):313–326.45
[18] WANG H, ZHOU X Y. Continuous-time mean–variance portfolio selection: A reinforcement learning framework[J]. Mathematical Finance, 2020, DOI: 10.1111/mafi.12281.
[19] CHOWDHURY R, MAHDY M, TANISHA NOURIN ALAM E A. Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model[J]. Physica A 124444, 2020, A 555.
[20] CHI S. A differential neural network learns stochastic differential equations and the Black-Scholes equation for pricing multi-asset options[D]. Department of Computer Science, Kyung-sung University, Busan 48434, South Korea, 2020.
[21] VAIDYA T, MURGUIA C, PILIOURAS G. Learning agents in Black–Scholes financial markets[J]. Mathematical Finance, 2020, R. Soc. Open Sci. 7: 201188.
[22] HALPERIN I. Q-Learner in the Black-Scholes(-Merton) Worlds[J]. Computational Finance(q-fin.CP); Machine Learning (cs.LG), 2019, Vol. 9.
[23] BAYRAM M, BUYUKOZ G O, PARTAL T. Parameter Estimation in a Black-Scholes Model[J]. Thermal Science, 2018, 22: 117-122.
[24] SHAHRABI J, ADIBI M A, MAHOOTCHI M. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling[J]. Computers Industrial Engineering, 2017, 110:75-82.
[25] TEKA K H. Parameter Estimation Of The Black-Scholes-Merton Model[D]. KANSAS STATE UNIVERSITY Manhattan, Kansas, 2013.
[26] HAIQIU L. Perspective of Expanded Black- Scholes Model and Estimation of Parameter[J].Soft Science, 2005, 110.
[27] NA H S. Black-Scholes Option Pricing Using Three Volatility Models: Moving Average,GARCH(1, 1), and Adaptive GARCH[D]. Rotterdam, Netherlands: Erasmus University, August2003.
[28] FOUQUE J P, PAPANICOLAOU G, SIRCAR K R. Stochastic Volatility Correction to Black-Scholes. NC State University[D]. NC State University, January 2000.
[29] EVEN-DAR E, MANSOUR Y. Learning Rates for Q-learning[J]. Journal of Machine Learning Research, 2017, 110: 75-82.
[30] PARKINSON M. The Extreme Value Method for Estimating the Variance of the Rate of Return [J]. The Journal of Business, February 1980: 61-65.
修改评论