中文版 | English
题名

六、七元硅中心手性杂环的不对称合成

其他题名
ASYMMETRIC SYNTHESIS OF SIX-AND SEVEN-MEMBERED SILICON-STEREOGENIC HETEROCYCLES
姓名
姓名拼音
MAI Peilin
学号
12032123
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
何川
导师单位
化学系
论文答辩日期
2022-05-14
论文提交日期
2022-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  硅中心手性硅烷是一类重要的化合物,在手性药物和新型功能材料方面有潜在应用。手性硅烷主要通过手性辅剂拆分、动力学拆分和不对称催化等方法得到。毫无疑问,利用过渡金属不对称催化一步构建结构多样的硅中心手性硅烷是更高效、更原子经济的方法。在此前的工作中,通过对二氢硅烷和四取代硅烷的去对称化,可以实现硅中心手性硅烷的合成。其中,含硅中心手性五元硅环的合成方法较为丰富,而六元和七元环的例子很少。

  基于以上几点,我们通过合理的底物设计实现了一系列六元、七元环的三取代硅中心手性杂环化合物的构建。该过程经历了铑催化分子内直接脱氢的CH硅基化反应,具有良好的产率、优异的对映选择性和广泛的底物普适性等优点。再者,通过对产物一氢硅烷进一步转化,可以得到手性保持的相应四取代硅中心手性硅烷。通过该方法,我们可以快速地构建含硅中心手性的π-共轭联芳烃骨架。更重要的是,大部分产物表现出明亮的蓝色荧光性质。其中,某些产物展现出圆偏振发光的特性,这为手性硅基功能材料的发展提供了新思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1]HARTWIG JF, CHENG C. Catalytic Silylation of Unactivated C−H Bonds[J]. Chem. Rev. 2015, 115: 8946-8975.

[2]GEVORGYAN V, PARASRAM M. Silicon-Tethered Strategies for C−H Functionalization Reactions[J]. Acc. Chem. Res. 2017, 50: 2038-2053.

[3]MUTAHI M, NITTOLI T, GUO L, et al. Silicon-Based Metalloprotease Inhibitors:  Synthesis and Evaluation of Silanol and Silanediol Peptide Analogues as Inhibitors of Angiotensin-Converting Enzyme[J]. J. Am. Chem. Soc. 2002, 124(25): 7363-7375.

[4]RĆMOND E, MARTIN C, MARTINEZ J, et al. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides[J]. Chem. Rev. 2016, 116(19): 11654-11684.

[5]KAWAKAMI Y, KAKIHANA Y, OOI O, et al. Control of Stereochemical Structures of Silicon-Containing Polymeric Systems[J]. Polym. Int. 2009, 58: 279-284.

[6]KOGA S, UEKI S, SHIMADA M, et al. Access to Chiral Silicon Centers for Application to Circularly Polarized Luminescence Materials[J]. J. Org. Chem. 2017, 82(12): 6108-6117.

[7]CHUIT C, CORRIU R, REYE C, et al. Reactivity of Penta- and Hexacoordinate Silicon Compounds and Their Role as Reaction Intermediates[J]. Chem. Rev. 1993, 93(4): 1371-1448.

[8]BAUER J, STROHMANN C. Stereocontrol in Nucleophilic Substitution Reactions at Silicon: The role of Permutation in Generating Silicon-Centered Chirality[J]. J. Am. Chem. Soc. 2015, 137(13): 4304-4307.

[9]SHOWELL G, MILLS J. Chemistry Challenges in Lead Optimization: Silicon Isosteres in Drug Discovery[J]. Drug Discovery Today, 2003, 8(12): 551-556.

[10]TACKE R, METZ S. Odorant Design Based on the Carbon/Silicon Switch Strategy[J]. Chemistry&Biodiversity, 2008, 5(6): 920-941.

[11]李汉堂. 有机硅材料的发展及其应用[J]. 有机硅材料, 2006, 20(4): 212-217.

[12]WEICKGENANNT A, OESTREICH M. The Renaissance of Silicon-Stereogenic Silanes: a Personal Account[M]. Asymmetric Synth II. 2013, 35-42.

[13]XU LW, LI L, LAI GQ, et al. The Recent Synthesis and Application of Silicon-Stereogenic Silanes: a Renewed and Significant Challenge in Asymmetric Synthesis[J]. Chem. Soc. Rev. 2011, 40: 1777-1790.

[14]HISSLER M, DYER P, REAU R. Linear Organic Π-Conjugated Systems Featuring the Heavy Group 14 and 15 Elements[J]. Coord. Chem. Rev. 2003, 244: 1-44.

[15]WONG W, HOOPER J, HOLMES A. Silicon Analogues of Polyfluorene as Materials for Organic Electronics[J]. Aust. J. Chem. 2009, 62(5): 393-401.

[16]FU HY, CHENG YR. Electroluminescent and Photovoltaic Properties of Silole-Based Materials[J]. Curr. Org. Chem. 2012, 16(11): 1423-1446;

[17]ZHAO Z, HE B, TANG BZ. Aggregation-Induced Emission of Siloles[J]. Chem. Sci. 2015, 6: 5347-5365.

[18]COREY J. Siloles: part 2: Silaindenes (Benzosiloles) and Silafluorenes (Dibenzosiloles): Synthesis, Characterization, and Applications[J]. Adv. Organomet. Chem. 2011, 59: 181-328.

[19]SHIMIZU M, HIYAMA T. Silicon-Bridged Biaryls: Molecular Design, New Synthesis, and Luminescence Control[J]. Synlett, 2012, 23: 973-989.

[20]FURUKAWA S, KOBAYASHI J, KAWASHIMA T. Development of a Sila-Friedelcrafts Reaction and its Application to the Synthesis of Dibenzosilole Derivatives[J]. J. Am. Chem. Soc. 2009, 131(40): 14192-14193.

[21]TAKAI K, KUNINOBU Y, URESHINO T, et al. Rhodium-Catalyzed Synthesis of Silafluorene Derivatives via Cleavage of Silicon–Hydrogen and Carbon–Hydrogen Bonds[J]. J. Am. Chem. Soc. 2010, 132(41): 14324-14326.

[22]NISHIHARA H, YABUSAKI Y, OHSHIMA N, et al. Versatile Synthesis of Blue Luminescent Siloles and Germoles and Hydrogen-Bond-Assisted Color Alteration[J]. Chem. Eur. J. 2010, 16: 5581-5585.

[23]LIANG Y, ZHANG S, XI Z. Palladium-Catalyzed Synthesis of Benzosilolo

[2,3-B]Indoles via Cleavage of a C(sp3)–Si Bond and Consequent Intramolecular C(sp2)–Si Coupling[J]. J. Am. Chem. Soc. 2011, 133(24): 9204-9207.

[24]HE W, YUE Y, ZHANG QW, et al. Rhodium-Catalyzed Enantioselective Intramolecular C–H Silylation for the Syntheses of Planar-Chiral Metallocene Siloles[J]. Angew. Chem. Int. Ed. 2015, 54: 6918-6921.

[25]YAMAGUCHI S, TAMAO K. Silole-Containing σ- and π-Conjugated Compounds[J]. J. Chem. Soc. Dalton Trans., 1998, 3693-3702.

[26]TANG BZ, MEI J, LEUNG N, et al. Aggregation-Induced Emission: Together We Shine, United We Soar[J]. Chem. Rev. 2015, 115(21): 11718-11940.

[27]TANG BZ, LIU JZ, SU HM, et al. What Makes Efficient Circularly Polarised Luminescence in the Condensed Phase: Aggregation-Induced Circular Dichroism and Light Emission[J]. Chem. Sci. 2012, 3: 2737-2747.

[28]CORRIU R, MOREAU J. Asymmetric Synthesis of Alkoxysilanes Catalyzed by Rhodium Complexes[J]. Tetrahedron Lett. 1973, 14(45): 4469-4472.

[29]CORRIU R, MOREAU J. Asymmetric Hydrosilylation of Ketones Catalysed by a Chiral Rhodium Complex[J]. J. Organomet. Chem. 1974, 64(3): C51-C54.

[30]TAKAYA H, OHTA T, ITO M, et al. Asymmetric Synthesis of Silanes with a Stereogenic Centre at Silicon via Hydrosilylation of Symmetric Ketones with Prochiral Diaryl Silanes Catalysed by Binap-Rhi Complexes[J]. J. Chem. Soc. Chem. Commun. 1994, 12: 2525-2526.

[31]TAMAO K, NAKAMURA K, ISHII H, et al. Axially Chiral Spirosilanes via Catalytic Asymmetric Intramolecular Hydrosilation[J]. J. Am. Chem. Soc. 1996, 118(49): 12469-12470.

[32]TOMOOKA K, IGAWA K, YOSHIHIRO D, et al. Catalytic Enantioselective Synthesis of Alkenylhydrosilanes[J]. Angew. Chem. Int. Ed. 2012, 51: 12745-12748.

[33]KATSUKI T, YASUTOMI Y, SUEMATSU H. Iridium(III)-Catalyzed Enantioselective Si-H Bond Insertion and Formation of an Enantioenriched Silicon Center[J]. J. Am. Chem. Soc. 2010, 132(13): 4510-4511.

[34]NISHIHARA H, KURIHARA Y, NISHIKAWA M, et al. Synthesis of Optically Active Tertiary Silanes via Pd-Catalyzed Enantioselective Arylation of Secondary Silanes[J]. Chem. Commun. 2012, 48: 11564-11566.

[35]XU LW, CHEN L, HUANG JB, et al. Palladium-Catalyzed Si–C Bond-Forming Silylation of Aryl Iodides with Hydrosilanes: an Enhanced Enantioselective Synthesis of Silicon-Stereogenic Silanes by Desymmetrization[J]. RSC. Adv. 2016, 6: 67113-67117.

[36]TAKAI K, KUNINOBU Y, YAMAUCHI K, et al. Rhodium-Catalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives[J]. Angew. Chem. Int. Ed. 2013, 52: 1520-1522.

[37]WEN H, WAN X, HUANG Z. Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt- Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes[J]. Angew. Chem. Int. Ed. 2018, 57: 6319-6323.

[38]HOU ZM, ZHAN G, Teng HL, et al. Enantioselective Construction of Silicon-Stereogenic Silanes by Scandium-Catalyzed Intermolecular Alkene Hydrosilylation. Angew. Chem. Int. Ed. 2018, 57: 12342-12346.

[39]HE C, MU DL, YUAN W, et al. Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation[J]. J. Am. Chem. Soc. 2020, 142(31): 13459-13468.

[40]HE C, YANG B, YANG W, et al. Enantioselective Silylation of Aliphatic C–H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles[J]. Angew. Chem., Int. Ed. 2020, 59: 22217-22222.

[41]HE W, MA W, LIU LC, et al. Rh-Catalyzed Syntheses of Chiral Monohydrosilanes via Intramolecular C−H Functionalization Of Dihydrosilanes[J]. Angew. Chem. Int. Ed. 2021, 60: 4245-4251.

[42]HE C, ZHU JF, CHEN SY. Catalytic Enantioselective Dehydrogenative Si–O Coupling to Access Chiroptical Silicon-Stereogenic Siloxanes and Alkoxysilanes[J]. J. Am. Chem. Soc. 2021, 143(14): 5301-5307.

[43]WANG P, HUANG YH, WU YC, et al. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation[J]. Angew. Chem. Int. Ed. 2022, 61: e202113052.

[44]SHINTANI R, MORIYA K, HAYASHI T. Palladium-Catalyzed Enantioselective Desymmetrization of Silacyclobutanes: Construction of Silacycles Possessing A Tetraorganosilicon Stereocenter[J]. J. Am. Chem. Soc. 2011, 133(41): 16440-16443.

[45]SHINTANI R, MORIYA K, HAYASHI T. Palladium-Catalyzed Desymmetrization of Silacyclobutanes With Alkynes: Enantioselective Synthesis of Silicon-Stereogenic 1-Sila-2-Cyclohexenes and Mechanistic Considerations[J]. Org. Lett. 2012, 14(11): 2902-2905.

[46]HE W, ZHANG QW, AN K, et al. Construction of Chiral Tetraorganosilicons by Tandem Desymmetrization of Silacyclobutanes/Intermolecular Dehydrogenative Silylation[J]. Angew. Chem. Int. Ed. 2017, 56: 1125-1129.

[47]SHINTANI R, MACIVER E, TAMAKUNI F, et al. Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation[J]. J. Am. Chem. Soc. 2012, 134(41): 16955-16958.

[48]OGOSHI S, KUMAR R, HOSHIMOTO Y, et al. Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process[J]. J. Am. Chem. Soc. 2015, 137(36): 11838-11845.

[49]XU LW, BAI XF, ZOU JF, et al. Lewis-Base-Mediated Diastereoselective Silylations of Alcohols: Synthesis of Silicon-Stereogenic Dialkoxysilanes Controlled by Chiral Aryl BINMOLs[J]. Chem. Asian J. 2017, 12:1730-1735.

[50]SHINTANI R, OTOMO H, OTA K, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C–H Bond Functionalization[J]. J. Am. Chem. Soc. 2012, 134(17): 7305-7308.

[51]SHINTANI R, SATO Y, TAKAGI C, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5, 10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration[J]. Angew. Chem. Int. Ed. 2017, 56: 9211-9216.

[52]SHINTANI R, TAKAGI C, ITO T, et al. Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles by Enantioselective

[2+2+2] Cycloaddition[J]. Angew. Chem. Int. Ed. 2015, 54: 1616-1620.

[53]SONG ZL, CHEN H, CHEN Y, et al. Rhodium-Catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes[J]. Angew. Chem. Int. Ed. 2019, 58: 4695-4699.

[54]XU LW, TANG RH, XU Z, et al. Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles[J]. iScience. 2020, 23: 101268.

[55]ZHANG Q, ZHANG G, LI Y, et al. Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes[J]. Angew. Chem. Int. Ed. 2020, 59: 11927-11931.

[56]ZHAO DB, ZHANG JY, YAN N, et al. Nickel(0)-Catalyzed Asymmetric Ring Expansion toward Enantioenriched Silicon-Stereogenic Benzosiloles[J]. Angew. Chem. Int. Ed. 2021, 60: 1-7.

[57]ZHAO DB, ZHANG HP. Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C−H Silylation Leading to a New Ligand Scaffold[J]. ACS Catal. 2021, 11: 10748−10753.

[58]HE W, AN K, MA WP, et al. Rhodium Hydride Enabled Enantioselective Intermolecular C–H Silylation to Access Acyclic Stereogenic Si–H[J]. Nat. Commun. 2022, 13: 847.

[59]SHINTANI R, MORIYA K, HAYASHI T. Palladium-Catalyzed Enantioselective Desymmetrization of Silacyclobutanes: Construction of Silacycles Possessing a Tetraorganosilicon Stereocenter[J]. J. Am. Chem. Soc. 2011, 133(41): 16440-16443.

[60]HAYASHI T, SHINTANI R, MACIVER E, et al. Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation[J]. J. Am. Chem. Soc. 2012, 134(41): 16955-16958;

[61]NOZAKI K, SHINTANI R, SATO Y, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5,10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration[J]. Angew. Chem., Int. Ed. 2017, 56: 9211-9216.

[62]SONG ZL, CHEN H, CHEN Y, et al. Rhodium-Catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes[J]. Angew. Chem. Int. Ed. 2019, 58: 4695-4699.

[63]SHIMIZU M, MOCHIDA K, HIYAMA T. Modular Approach to Silicon-bridged Biaryls: Palladium-catalyzed Intramolecular Coupling of 2-(Arylsilyl)aryl Triflates[J]. Angew. Chem. Int. Ed. 2008, 47: 9760-9764.

[64]NAKAO H, HAYASHI H, OKITA K. Spectroelectrochemical Characterization of Si-bridged Diphenylamines: Influence of Si-bridging upon Electronic Structures of Diphenylamines[J]. Anal. Sci. 2001, 17: 545-549.

[65]HUANG W, LI H, WANG Y, et al. Efficient Synthesis of π-Extended Phenazasilines for Optical and Electronic Applications[J]. Chem. Commun. 2014, 50: 15760-15763.

[66]MATTSON A, VISCO M, WIETING J. Carbon-Silicon Bond Formation in the Synthesis of Benzylic Silanes[J]. Org. Lett. 2016, 18(12): 2883-2885.

[67]YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-Catalyzed Enantioselective Si−H Bond Insertion and Formation of an Enantioenriched Silicon Center[J]. J. Am. Chem. Soc. 2010, 132(13): 4510-4511.

[68]BARAN P, XU D, RIVAS-BASĆON N, et al. Enantiodivergent Formation of C-P Bonds: Synthesis of P-Chiral Phosphines and Methylphosphonate Oligonucleotides[J]. J. Am. Chem. Soc. 2020, 142(12): 5785-5792.

[69]PRIM D, PERATO S, LARGE B, et al. Pyridylmethylamine-Palladium Catalytic Systems: A Selective Alternative in the C−H Arylation of Indole[J]. ChemCatChem. 2017, 9: 389-392.

[70]DAVIES W, MIDDLETON S. Benxofuran Derivatives formed by Cyclisation of ѡ- Aryloxyacetophenones[J]. J. Chem. Soc. 1958, 822-825.

[71]SHRIVES H, FERNÁNDEZ-SALAS J, HEDTKE C, et al. Regioselective Synthesis of C3 Alkylated and Arylated Benzothiophenes[J]. Nat. Commun. 2017, 8: 14801-14807.

[72]LANDAIS Y, DUCOS P, LIAUTARD V, et al. Chiral Memory in Silylium Ions[J]. Chem. Eur. J. 2015, 21: 11573-11578.

[73]CHEN S, QIAO Y, WU, XX, et al. Copper-Catalyzed Successive C−C bond formations on Indoles or Pyrrole: A Convergent Synthesis of Symmetric and Unsymmetric Hydroxyl Substituted N-H Carbazoles[J]. Adv. Synth. Catal. 2018, 360: 2138-2143.

[74]ROS A, DOMÍNGUEZ Z, LÓPEZ-RODRÍGUEZ R, et al. Azabora

[5]helicene Charge-Transfer Dyes Show Efficient and Spectrally Variable Circularly Polarized Luminescence[J]. Chem. Eur. J. 2018, 24: 12660-12668.

[75]SHIBATA T, ITO M, KAWASAKI R, et al. Construction of a Polycyclic Conjugated System Containing a Dibenzazepine Moiety by Cationic Gold(I)-Catalyzed Cycloisomerization[J]. Eur. J. Org. Chem. 2016, 5234-5237.

[76]TOMOOKA K, IGAWA K, YOSHIHIRO D, et al. Catalytic Enantioselective Synthesis of Alkenylhydrosilanes[J]. Angew. Chem. Int. Ed. 2012, 51: 12745-12748.

所在学位评定分委会
化学系
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353160
专题理学院_化学系
推荐引用方式
GB/T 7714
麦培琳. 六、七元硅中心手性杂环的不对称合成[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032123-麦培琳-化学系.pdf(4573KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[麦培琳]的文章
百度学术
百度学术中相似的文章
[麦培琳]的文章
必应学术
必应学术中相似的文章
[麦培琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。