[1] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.
[2] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[3] TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677.
[4] SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415.
[5] MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy [J]. Joule, 2020, 4(6): 1186-1205.
[6] SEEFELDT L C, HOFFMAN B M, DEAN D R. Mechanism of Mo-dependent nitrogenase[J].Annual Review of Biochemistry, 2009, 78: 701-722.
[7] HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062.
[8] FOSTER S L, BAKOVIC S I, DUDA R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500.
[9] CHEN J G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen trans formations[J]. Science, 2018, 360(6391).
[10] VAN DER HAM C J, KOPER M T, HETTERSCHEID D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.
[11] SMITH C, HILL A K, TORRENTE-MURCIANO L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energy and Environmental Science, 2020, 13 (2): 331-344.
[12] GUO C, RAN J, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy Environ. Sci., 2018, 11: 45-56.
[13] SOLOVEICHIK G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process[J]. Nature Catalysis, 2019, 2(5): 377-380.
[14] DIERCKS C S, LIU Y, CORDOVA K E, et al. The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nature Materials, 2018, 17(4): 301-307.
[15] BAZHENOVA T, SHILOV A. Nitrogen fixation in solution[J]. Coordination Chemistry Reviews, 1995, 144: 69-145.
[16] CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1-25.
[17] HONKALA K, HELLMAN A, REMEDIAKIS I N, et al. Ammonia synthesis from firstprinciples calculations[J]. Science, 2005, 307(5709): 555-558.
[18] HAO Y C, GUO Y, CHEN L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2(5): 448-456.
[19] MONTOYA J H, TSAI C, VOJVODIC A, et al. The challenge of electrochemical ammoniasynthesis: A new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015,8(13): 2180-2186.
[20] SURYANTO B H, DU H L, WANG D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296.
[21] JIAO F, XU B. Electrochemical ammonia synthesis and ammonia fuel cells[J]. AdvancedMaterials, 2019, 31(31): 1-5.
[22] SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry ChemicalPhysics, 2012, 14(3): 1235-1245.
[23] YAO Y, ZHU S, WANG H, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces[J]. Journal of the American Chemical Society,2018, 140(4): 1496-1501.
[24] FERNNDEZ E M, MOSES P G, TOFTELUND A, et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces[J]. Angewandte Chemie International Edition, 2008, 47(25): 4683-4686.
[25] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of co oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
[26] YANG X F, WANG A, QIAO B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.
[27] LIU J C, TANG Y, WANG Y G, et al. Theoretical understanding of the stability of single-atom catalysts[J]. National Science Review, 2018, 5(5): 638-641.
[28] ZHUO H Y, ZHANG X, LIANG J X, et al. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance[J]. Chemical Reviews, 2020, 120(21): 12315-12341.
[29] FEI H, DONG J, CHEN D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.
[30] CHRISTOPHER P. Single-atom catalysts: Are all sites created equal?[J]. ACS Energy Letters, 2019, 4(9): 2249-2250.
[31] LI L, CHANG X, LIN X, et al. Theoretical insights into single-atom catalysts[J]. ChemicalSociety Reviews, 2020, 49(22): 8156-8178.
[32] LI X F, LI Q K, CHENG J, et al. Conversion of dinitrogen to ammonia by FeN3-embeddedgraphene[J]. Journal of the American Chemical Society, 2016, 138(28): 8706-8709.
[33] ZHAO W, ZHANG L, LUO Q, et al. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia[J]. ACS Catalysis, 2019, 9(4): 3419-3425.
[34] LING C, OUYANG Y, LI Q, et al. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation[J]. Small Methods, 2019, 3(9): 1800376.
[35] ZHANG W, FU Q, LUO Q, et al. Understanding single-atom catalysis in view of theory[J].JACS Au, 2021, 1(12): 2130-2145.
[36] ZHANG S, NGUYEN L, LIANG J X, et al. Catalysis on singly dispersed bimetallic sites[J].Nature Communications, 2015, 6: 1-10.
[37] MA X L, LIU J C, XIAO H, et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion[J]. Journal of the American Chemical Society, 2018, 140(1): 46-49.
[38] LIU J C, MA X L, LI Y, et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism[J]. Nature Communications, 2018, 9(1): 1-9.
[39] CHEN Z W, YAN J M, JIANG Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction?[J]. Small Methods, 2019, 3(6): 1800291.
[40] HE T, Puente Santiago A R, DU A. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction[J]. Journal of Catalysis, 2020, 388: 77-83.
[41] GUO X, GU J, LIN S, et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts[J]. Journal of the American Chemical Society, 2020, 142(12): 5709-5721.
[42] DENG T, CEN C, SHEN H, et al. Atom-pair catalysts supported by N-doped graphene for the nitrogen reduction reaction: d-band center-based descriptor[J]. Journal of Physical Chemistry Letters, 2020, 11(15): 6320-6329.
[43] WANG J, HUANG Z, LIU W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
[44] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy and Environmental Science, 2018, 11(12): 3375-3379.
[45] YE W, CHEN S, LIN Y, et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction[J]. Chem, 2019, 5(11): 2865-2878.
[46] HAN X, LING X, YU D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Advanced Materials, 2019, 31(49): 1-9.
[47] REN W, TAN X, YANG W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angewandte Chemie International Edition(21): 6972-6976.
[48] ZHOU Y, YANG W, UTETIWABO W, et al. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than singleatom catalyst[J]. Journal of Physical Chemistry Letters(4): 1404-1410.
[49] WANG J, YOU R, ZHAO C, et al. N-coordinated dual-metal single-site catalyst for lowtemperature co oxidation[J]. ACS Catalysis, 2020, 10(4): 2754-2761.
[50] XU J, ELANGOVAN A, LI J, et al. Graphene-based dual-metal sites for oxygen reductionreaction: A theoretical study[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2334-2344.
[51] HUANG Z Q, CHEN Y T, CHANG C R, et al. Theoretical insights into dual-metal-site catalysts for the nonoxidative coupling of methane[J]. ACS Catalysis, 2021, 11(21): 13149-13159.
[52] JIA C, WANG Q, YANG J, et al. Toward rational design of dual-metal-site catalysts: Catalytic descriptor exploration[J]. ACS Catalysis, 2022, 12(6): 3420-3429.
[53] WANG F, XIE W, YANG L, et al. Revealing the importance of kinetics in N-coordinated dualmetal sites catalyzed oxygen reduction reaction[J]. Journal of Catalysis, 2021, 396: 215-223.
[54] WANG Q, JIN B, HU M, et al. N-doped graphene-supported diatomic Ni-Fe catalyst for synergistic oxidation of CO[J]. The Journal of Physical Chemistry C, 2021, 125(10): 5616-5622.
[55] ZHANG C, QIN S, LI B, et al. Dual-metal atom incorporated N-doped graphenes as oxygen evolution reaction electrocatalysts: high activities achieved by site synergies[J]. J. Mater. Chem. A, 2022, 10: 8309-8323.
[56] SHE Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321).
[57] NØRSKOV J K, BLIGAARD T, ROSSMEISL J, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1): 37-46.
[58] MARTÍN A J, SHINAGAWA T, PÉREZ-RAMÍREZ J. Electrocatalytic reduction of nitrogen: From Haber-Bosch to ammonia artificial leaf[J]. Chem, 2019, 5(2): 263-283.
[59] WANG Y, MIAO SHI M, BAO D, et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia[J]. Angewandte Chemie International Edition, 2019, 58(28): 9464-9469.
[60] YAO Y, WANG H, YUAN X Z, et al. Electrochemical nitrogen reduction reaction on ruthenium [J]. ACS Energy Letters, 2019, 4(6): 1336-1341.
[61] BACK S, JUNG Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst [J]. Physical Chemistry Chemical Physics, 2016, 18(13): 9161-9166.
[62] SURYANTO B H, WANG D, AZOFRA L M, et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia[J]. ACS Energy Letters, 2019, 4(2): 430-435.
[63] LIU Y, HAN M, XIONG Q, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1-9.
[64] LIU J. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2017, 7(1): 34-59.
[65] LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites[J]. Chemical Reviews, 2020, 120(2): 623-682.
[66] XU H, CHENG D, CAO D, et al. A universal principle for a rational design of single-atomelectrocatalysts[J]. Nature Catalysis, 2018, 1(5): 339-348.
[67] PENG P, SHI L, HUO F, et al. A pyrolysis-free path toward superiorly catalytic nitrogencoordinated single atom[J]. Science Advances, 2019, 5(8): eaaw2322.
[68] LIU X, JIAO Y, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts[J]. Journal of the American Chemical Society, 2019, 141(24): 9664-9672.
[69] CHEN Z, ZHAO J, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods, 2019, 3(6): 1800368.
[70] MONTEMORE M M, MEDLIN J W. Scaling relations between adsorption energies for computational screening and design of catalysts[J]. Catal. Sci. Technol., 2014, 4: 3748-3761.
[71] YAO C, GUO N, XI S, et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction[J]. Nature Communications, 2020, 11(1): 1-10.
[72] HUNTER M A, FISCHER J M T A, YUAN Q, et al. Evaluating the catalytic efficiency ofpaired, single-atom catalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2019, 9(9):7660-7667.
[73] LU Z, WANG B, HU Y, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie International Edition, 2019, 58(9): 2622-2626.
[74] YE W, CHEN S, LIN Y, et al. Precisely tuning the number of fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction[J]. Chem, 2019, 5(11): 2865-2878.
[75] HAN X, LING X, YU D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Advanced Materials, 2019, 31(49): 1905622.
[76] REN W, TAN X, YANG W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976.
[77] MA D, ZENG Z, LIU L, et al. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers[J]. The Journal of Physical Chemistry C, 2019, 123(31): 19066-19076.
[78] MA D, ZENG Z, LIU L, et al. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction[J]. Journal of Energy Chemistry, 2021, 54: 501-509.
[79] ZHANG X, CHEN A, ZHANG Z, et al. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts[J]. J. Mater. Chem. A, 2018, 6: 18599-18604.
[80] LI H, ZHAO Z, CAI Q, et al. Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: a theoretical prediction[J]. J. Mater. Chem. A, 2020, 8: 4533-4543.
[81] LV X, WEI W, HUANG B, et al. High-throughput screening of synergistic transition metaldual-atom catalysts for efficient nitrogen fixation[J]. Nano Letters, 2021, 21(4): 1871-1878.
[82] HU R, LI Y, ZENG Q, et al. Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: Search for the optimal coordination atoms[J]. ChemSusChem, 2020, 13 (14): 3636-3644.
[83] ZHENG G, LI L, HAO S, et al. Double atom catalysts: Heteronuclear transition metal dimer anchored on nitrogen-doped graphene as superior electrocatalyst for nitrogen reduction reaction [J]. Advanced Theory and Simulations, 2020, 3(12): 2000190.
[84] ZHENG X, YAO Y, WANG Y, et al. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study [J]. Nanoscale, 2020, 12: 9696-9707.
[85] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6 (1): 15-50.
[86] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169-11186.
[87] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140: A1133-A1138.
[88] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
[89] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[90] CHADI D J. Special points for Brillouin-Zone integrations[J]. Phys. Rev. B, 1977, 16: 1746-1747.
[91] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential foroxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[92] LING C, NIU X, LI Q, et al. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. Journal of the American Chemical Society, 2018, 140(43): 14161-14168.
[93] WANG S, SHI L, BAI X, et al. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites[J]. ACS Central Science, 2020, 6(10): 1762-1771.
[94] WANG P, CHANG F, GAO W, et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation[J]. Nature Chemistry, 2017, 9(1): 64-70.
修改评论