中文版 | English
题名

双原子单团簇催化剂电催化氮还原反应的理论研究

其他题名
THEORETICAL STUDY OF TWO-ATOM SINGLE CLUSTER CATALYSTS FOR NITROGEN ELECTROREDUCTION REACTION
姓名
姓名拼音
CHEN Junchi
学号
12032097
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李隽
导师单位
化学系
论文答辩日期
2022-05-09
论文提交日期
2022-07-09
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氨(NH3)在维持人口增长和工业生产等方面扮演着重要角色。目前工业合成氨主要依靠传统的 Haber-Bosch 工艺。然而,电催化氮还原反应(NRR)有望通过使用可再生能源实现 NH3 的分散式生产,这与能源密集型的 Haber-Bosch 工艺形成了鲜明的对比。实现这一目标的关键是找到稳定、高效且具有选择性的 NRR 电催化剂。近年来,非均相单团簇催化剂(SCC)由于其原子级精确的活性位点、丰富的活性原子以及原子级可调控性而成为一类具有潜力的电化学反应催化剂。因此,本文通过使用密度泛函理论(DFT)系统地进行了由氮掺杂石墨烯负载同核 3d过渡金属(TM)二聚体组成的双原子 SCC(记作: M2-N6G)催化 NRR 的研究。我们的研究结果表明,金属二聚体捕获 N2 的能力与催化剂的还原性以及 TM-3d 态和 N-2p 态之间的电子相互作用有关。随后,我们发现,与那些通过侧位构型过度结合 N2 的催化剂相比,以端位构型吸附 N2 的 M2-N6G 具有更好的催化性能。此外,我们得到了 *N2H 吸附自由能(ads𝐺N2H)和 *NH2(ads𝐺NH2)吸附自由能之间的线性关系。基于这种线性关系,我们提出了一种合理的策略可用于筛选具有高效催化 NRR 活性的双原子 SCC。最后,通过比较各种 M2-N6G SCC 的稳定性、活性和选择性, Cr2-N6G 和 Mn2-N6G 具有较低的 NRR 发生极限电势和抑制析氢反应发生的能力,从而被预测是具有催化 NRR 最优性能的两种 M2-N6G。目前的工作不仅为 NRR 提供了实验上具有可合成性的候选电催化剂,而且还深入了解了双原子 SCC 的催化机理。这对于双原子 SCC 在电催化领域的发展具有一定的帮助。
 

其他摘要

Ammonia (NH3) plays an important role in maintaining population growth and industrial production. At present, industrial ammonia synthesis mainly relies on the traditional Haber-Bosch process. However, the electrocatalytic dinitrogen reduction reaction (NRR) is promising to realize the decentralized production of ammonia by using renewable energies, which contrasts with the energy-intensive Haber-Bosch process. The key to achieve it is to find stable, efficient and selective electrocatalysts. Recently, the heterogeneous single-cluster catalysts (SCC) have emerged as a promising class of catalysts for electrochemical reactions due to their atomically precise active site, abundant active atoms and atomic level controllability. Herein, the NRR catalyzed by the two-atom SCC consisting of homonuclear 3d transition metal dimers over the N-doped graphene, denoted as M2-N6G, are systematically investigated by using density functional theory (DFT). Our results indicate that the ability of metal dimer to capture N2 is related to the reducibility of the catalyst and the electronic interaction between the N-2p states and the TM-3d states.
Subsequently, comparing with those catalysts which overbind N2 through side-on configurations, the M2-N6G SCC with end-on adsorption of N2 work better. Furthermore, we obtain a linear relationship between the adsorption free energies of *N2H (ads𝐺N2H) and that of *NH2 (ads𝐺NH2). Based on this scaling relationship, we propose a compromised strategy for screening efficient two-atom SCC for NRR. Finally, by comparing the stability, activity and selectivity of various M2-N6G SCC, the Cr2-N6G and Mn2-N6G are predicted to be most active for NRR with low limiting potential and high suppression to hydrogen evolution reaction (HER). The present work not only provides experimentally synthesizable electrocatalyst candidates for NRR, but also gives insight into the catalytic mechanism of the two-atom SCC, which is beneficial for the development of two-atom SCC in electrocatalysis.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020-09
学位授予年份
2022-06
参考文献列表

[1] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.
[2] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[3] TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677.
[4] SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415.
[5] MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy [J]. Joule, 2020, 4(6): 1186-1205.
[6] SEEFELDT L C, HOFFMAN B M, DEAN D R. Mechanism of Mo-dependent nitrogenase[J].Annual Review of Biochemistry, 2009, 78: 701-722.
[7] HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062.
[8] FOSTER S L, BAKOVIC S I, DUDA R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500.
[9] CHEN J G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen trans formations[J]. Science, 2018, 360(6391).
[10] VAN DER HAM C J, KOPER M T, HETTERSCHEID D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.
[11] SMITH C, HILL A K, TORRENTE-MURCIANO L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energy and Environmental Science, 2020, 13 (2): 331-344.
[12] GUO C, RAN J, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy Environ. Sci., 2018, 11: 45-56.
[13] SOLOVEICHIK G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process[J]. Nature Catalysis, 2019, 2(5): 377-380.
[14] DIERCKS C S, LIU Y, CORDOVA K E, et al. The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nature Materials, 2018, 17(4): 301-307.
[15] BAZHENOVA T, SHILOV A. Nitrogen fixation in solution[J]. Coordination Chemistry Reviews, 1995, 144: 69-145.
[16] CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1-25.
[17] HONKALA K, HELLMAN A, REMEDIAKIS I N, et al. Ammonia synthesis from firstprinciples calculations[J]. Science, 2005, 307(5709): 555-558.
[18] HAO Y C, GUO Y, CHEN L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2(5): 448-456.
[19] MONTOYA J H, TSAI C, VOJVODIC A, et al. The challenge of electrochemical ammoniasynthesis: A new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015,8(13): 2180-2186.
[20] SURYANTO B H, DU H L, WANG D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296.
[21] JIAO F, XU B. Electrochemical ammonia synthesis and ammonia fuel cells[J]. AdvancedMaterials, 2019, 31(31): 1-5.
[22] SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry ChemicalPhysics, 2012, 14(3): 1235-1245.
[23] YAO Y, ZHU S, WANG H, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces[J]. Journal of the American Chemical Society,2018, 140(4): 1496-1501.
[24] FERNNDEZ E M, MOSES P G, TOFTELUND A, et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces[J]. Angewandte Chemie International Edition, 2008, 47(25): 4683-4686.
[25] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of co oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
[26] YANG X F, WANG A, QIAO B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.
[27] LIU J C, TANG Y, WANG Y G, et al. Theoretical understanding of the stability of single-atom catalysts[J]. National Science Review, 2018, 5(5): 638-641.
[28] ZHUO H Y, ZHANG X, LIANG J X, et al. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance[J]. Chemical Reviews, 2020, 120(21): 12315-12341.
[29] FEI H, DONG J, CHEN D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.
[30] CHRISTOPHER P. Single-atom catalysts: Are all sites created equal?[J]. ACS Energy Letters, 2019, 4(9): 2249-2250.
[31] LI L, CHANG X, LIN X, et al. Theoretical insights into single-atom catalysts[J]. ChemicalSociety Reviews, 2020, 49(22): 8156-8178.
[32] LI X F, LI Q K, CHENG J, et al. Conversion of dinitrogen to ammonia by FeN3-embeddedgraphene[J]. Journal of the American Chemical Society, 2016, 138(28): 8706-8709.
[33] ZHAO W, ZHANG L, LUO Q, et al. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia[J]. ACS Catalysis, 2019, 9(4): 3419-3425.
[34] LING C, OUYANG Y, LI Q, et al. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation[J]. Small Methods, 2019, 3(9): 1800376.
[35] ZHANG W, FU Q, LUO Q, et al. Understanding single-atom catalysis in view of theory[J].JACS Au, 2021, 1(12): 2130-2145.
[36] ZHANG S, NGUYEN L, LIANG J X, et al. Catalysis on singly dispersed bimetallic sites[J].Nature Communications, 2015, 6: 1-10.
[37] MA X L, LIU J C, XIAO H, et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion[J]. Journal of the American Chemical Society, 2018, 140(1): 46-49.
[38] LIU J C, MA X L, LI Y, et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism[J]. Nature Communications, 2018, 9(1): 1-9.
[39] CHEN Z W, YAN J M, JIANG Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction?[J]. Small Methods, 2019, 3(6): 1800291.
[40] HE T, Puente Santiago A R, DU A. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction[J]. Journal of Catalysis, 2020, 388: 77-83.
[41] GUO X, GU J, LIN S, et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts[J]. Journal of the American Chemical Society, 2020, 142(12): 5709-5721.
[42] DENG T, CEN C, SHEN H, et al. Atom-pair catalysts supported by N-doped graphene for the nitrogen reduction reaction: d-band center-based descriptor[J]. Journal of Physical Chemistry Letters, 2020, 11(15): 6320-6329.
[43] WANG J, HUANG Z, LIU W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.
[44] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy and Environmental Science, 2018, 11(12): 3375-3379.
[45] YE W, CHEN S, LIN Y, et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction[J]. Chem, 2019, 5(11): 2865-2878.
[46] HAN X, LING X, YU D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Advanced Materials, 2019, 31(49): 1-9.
[47] REN W, TAN X, YANG W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angewandte Chemie International Edition(21): 6972-6976.
[48] ZHOU Y, YANG W, UTETIWABO W, et al. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than singleatom catalyst[J]. Journal of Physical Chemistry Letters(4): 1404-1410.
[49] WANG J, YOU R, ZHAO C, et al. N-coordinated dual-metal single-site catalyst for lowtemperature co oxidation[J]. ACS Catalysis, 2020, 10(4): 2754-2761.
[50] XU J, ELANGOVAN A, LI J, et al. Graphene-based dual-metal sites for oxygen reductionreaction: A theoretical study[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2334-2344.
[51] HUANG Z Q, CHEN Y T, CHANG C R, et al. Theoretical insights into dual-metal-site catalysts for the nonoxidative coupling of methane[J]. ACS Catalysis, 2021, 11(21): 13149-13159.
[52] JIA C, WANG Q, YANG J, et al. Toward rational design of dual-metal-site catalysts: Catalytic descriptor exploration[J]. ACS Catalysis, 2022, 12(6): 3420-3429.
[53] WANG F, XIE W, YANG L, et al. Revealing the importance of kinetics in N-coordinated dualmetal sites catalyzed oxygen reduction reaction[J]. Journal of Catalysis, 2021, 396: 215-223.
[54] WANG Q, JIN B, HU M, et al. N-doped graphene-supported diatomic Ni-Fe catalyst for synergistic oxidation of CO[J]. The Journal of Physical Chemistry C, 2021, 125(10): 5616-5622.
[55] ZHANG C, QIN S, LI B, et al. Dual-metal atom incorporated N-doped graphenes as oxygen evolution reaction electrocatalysts: high activities achieved by site synergies[J]. J. Mater. Chem. A, 2022, 10: 8309-8323.
[56] SHE Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321).
[57] NØRSKOV J K, BLIGAARD T, ROSSMEISL J, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1): 37-46.
[58] MARTÍN A J, SHINAGAWA T, PÉREZ-RAMÍREZ J. Electrocatalytic reduction of nitrogen: From Haber-Bosch to ammonia artificial leaf[J]. Chem, 2019, 5(2): 263-283.
[59] WANG Y, MIAO SHI M, BAO D, et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia[J]. Angewandte Chemie International Edition, 2019, 58(28): 9464-9469.
[60] YAO Y, WANG H, YUAN X Z, et al. Electrochemical nitrogen reduction reaction on ruthenium [J]. ACS Energy Letters, 2019, 4(6): 1336-1341.
[61] BACK S, JUNG Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst [J]. Physical Chemistry Chemical Physics, 2016, 18(13): 9161-9166.
[62] SURYANTO B H, WANG D, AZOFRA L M, et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia[J]. ACS Energy Letters, 2019, 4(2): 430-435.
[63] LIU Y, HAN M, XIONG Q, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1-9.
[64] LIU J. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2017, 7(1): 34-59.
[65] LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites[J]. Chemical Reviews, 2020, 120(2): 623-682.
[66] XU H, CHENG D, CAO D, et al. A universal principle for a rational design of single-atomelectrocatalysts[J]. Nature Catalysis, 2018, 1(5): 339-348.
[67] PENG P, SHI L, HUO F, et al. A pyrolysis-free path toward superiorly catalytic nitrogencoordinated single atom[J]. Science Advances, 2019, 5(8): eaaw2322.
[68] LIU X, JIAO Y, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts[J]. Journal of the American Chemical Society, 2019, 141(24): 9664-9672.
[69] CHEN Z, ZHAO J, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods, 2019, 3(6): 1800368.
[70] MONTEMORE M M, MEDLIN J W. Scaling relations between adsorption energies for computational screening and design of catalysts[J]. Catal. Sci. Technol., 2014, 4: 3748-3761.
[71] YAO C, GUO N, XI S, et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction[J]. Nature Communications, 2020, 11(1): 1-10.
[72] HUNTER M A, FISCHER J M T A, YUAN Q, et al. Evaluating the catalytic efficiency ofpaired, single-atom catalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2019, 9(9):7660-7667.
[73] LU Z, WANG B, HU Y, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie International Edition, 2019, 58(9): 2622-2626.
[74] YE W, CHEN S, LIN Y, et al. Precisely tuning the number of fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction[J]. Chem, 2019, 5(11): 2865-2878.
[75] HAN X, LING X, YU D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Advanced Materials, 2019, 31(49): 1905622.
[76] REN W, TAN X, YANG W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976.
[77] MA D, ZENG Z, LIU L, et al. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers[J]. The Journal of Physical Chemistry C, 2019, 123(31): 19066-19076.
[78] MA D, ZENG Z, LIU L, et al. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction[J]. Journal of Energy Chemistry, 2021, 54: 501-509.
[79] ZHANG X, CHEN A, ZHANG Z, et al. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts[J]. J. Mater. Chem. A, 2018, 6: 18599-18604.
[80] LI H, ZHAO Z, CAI Q, et al. Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: a theoretical prediction[J]. J. Mater. Chem. A, 2020, 8: 4533-4543.
[81] LV X, WEI W, HUANG B, et al. High-throughput screening of synergistic transition metaldual-atom catalysts for efficient nitrogen fixation[J]. Nano Letters, 2021, 21(4): 1871-1878.
[82] HU R, LI Y, ZENG Q, et al. Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: Search for the optimal coordination atoms[J]. ChemSusChem, 2020, 13 (14): 3636-3644.
[83] ZHENG G, LI L, HAO S, et al. Double atom catalysts: Heteronuclear transition metal dimer anchored on nitrogen-doped graphene as superior electrocatalyst for nitrogen reduction reaction [J]. Advanced Theory and Simulations, 2020, 3(12): 2000190.
[84] ZHENG X, YAO Y, WANG Y, et al. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study [J]. Nanoscale, 2020, 12: 9696-9707.
[85] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6 (1): 15-50.
[86] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169-11186.
[87] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140: A1133-A1138.
[88] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
[89] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[90] CHADI D J. Special points for Brillouin-Zone integrations[J]. Phys. Rev. B, 1977, 16: 1746-1747.
[91] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential foroxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[92] LING C, NIU X, LI Q, et al. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. Journal of the American Chemical Society, 2018, 140(43): 14161-14168.
[93] WANG S, SHI L, BAI X, et al. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites[J]. ACS Central Science, 2020, 6(10): 1762-1771.
[94] WANG P, CHANG F, GAO W, et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation[J]. Nature Chemistry, 2017, 9(1): 64-70.

所在学位评定分委会
化学系
国内图书分类号
O643.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353161
专题理学院_化学系
推荐引用方式
GB/T 7714
陈俊池. 双原子单团簇催化剂电催化氮还原反应的理论研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
30020075-陈俊池-化学系.pdf(12948KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈俊池]的文章
百度学术
百度学术中相似的文章
[陈俊池]的文章
必应学术
必应学术中相似的文章
[陈俊池]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。