[1] DAWSON J K. Prospects for hydrogen as an energy resource[J]. Nature, 1974, 249(5459): 724-726.
[2] 英荷壳牌石油公司. BP 世界能源统计年鉴 2021 版[M].伦敦: 英荷壳牌石油公司, 2021: 32-39.
[3] 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(09):3248-3255.
[4] HUANG Y, LIU Q, JIN XX, et al. Coating the porous Al 2O3 substrate with a natural mineral of nontronite-15A for fabrication of hydrogen-permeable palladium membranes[J]. Int J Hydrog Energy, 2020, 45(12): 7412-7422.
[5] PATI S, JAT R A, ANAND N S, et al. Pd-Ag-Cu dense metallic membrane for hydrogen isotope purification and recovery at low pressures[J]. J Membrane Sci, 2017, 522: 151-158.
[6] MA R, CASTRO-DOMINGUEZ B, G. DIXON A, et al. Scalability of multitube membrane modules for hydrogen separation: technical considerations, issues and solutions[J]. J Membrane Sci, 2018, 564: 887-896.
[7] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renew Sust Energ Rev, 2017, 67: 597-611.
[8] NIAKOLAS D K, DALETOU M, NEOPHYTIDES S G, et.al. Fuel cells are a commercially viable alternative for the production of “clean” energy[J]. Ambio,2016,45(1): 32-37.
[9] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861):345-352.
[10] NAJJAR Y. Hydrogen safety: The road toward green technology[J]. Int J Hydrog Energy, 2013, 38(25): 10716-10728.
[11] SHARMA R, KUMAR A, UPADHYAY R K. Performance comparison of methanol steam reforming integrated to Pd-Ag membrane: membrane reformer vs. membrane separator[J]. Sep Purif Technol, 2017, 183: 194-203.
[12] 代磊, 李明, 胡鸣若. 用于 PEMFC 的天然气水蒸气制氢系统[J]. 化工学报, 2009, 60(S1): 90-94.
[13] 李亮荣, 李秋平, 艾盛, 等. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程, 2021, 38(11): 1-6.
[14] PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2007, 107(10): 3992-4021.
[15] 苏海兰, 史立杰, 高珠, 等. 甲醇水蒸气重整制氢研究进展[J]. 工业催化, 2019, 27(04): 28-31.
[16] CHEN L, QI Z, PENG X, et al. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts[J]. J Am Chem Soc, 2021, 143: 12074-12081
[17] 李佩佩, 翟燕萍, 王先鹏, 等. 浅谈氢气提纯方法的选取[J]. 天然气化工(C1 化学与化工), 2020, 45(03): 115-119.
[18] DU ZM, LIU CM, ZHAI JX, et al. A review of hydrogen purification technologies for fuel cell vehicles[J]. Catalysts, 2021, 11(3): 393-409
[19] 张勇, 胡旭, 杨中贵, 等. 探究变压吸附气体分离的技术及应用[J]. 当代化工研究, 2022(04): 48-50.
[20] 王永锋, 张雷. 氢气提纯工艺及技术选择[J]. 化工设计, 2015, 25(02): 14-17.
[21] ADHIKARI S, FERNANDO S. Hydrogen membrane separation techniques[J]. Ind Eng Chem Res, 2006, 45(3):875-881.
[22] BERNARDO G, ARAÚJO T, LOPES T D S. Recent advances in membrane technologies for hydrogen purification[J]. Int J Hydrog Energy, 2020, 45(12): 7313-7338.
[23] LEE C H, JO Y S, PARK Y, et al. Unconventional hydrogen permeation behavior of Pd/bcc composite membranes and significance of surface reaction kinetics[J]. J Membrane Sci, 2020, 595: 117506-117515
[24] PETERS T, CARAVELLA A. Pd-based membranes: overview and perspectives[J]. Membranes, 2019, 9(2): 25-29.
[25] RAHIMPOUR M R, SAMIMI F, BABAPOOR A, et al. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review[J]. Chem Eng Process, 2017, 121: 24-49.
[26] Cardoso S, Azenha I, Lin Z, et al. Inorganic membranes for hydrogen separation[J]. Sep Purif Ref, 2018, 47(3): 229-266.
[27] GRAHAM T. On the absorption and dialytic separation of gases by colloid septa[J]. Proc. Royal Soc, 1866, 83(1): 39-41.
[28] NAM S E, LEE K H. Hydrogen separation by Pd alloy composite membranes: Introduction of diffusion barrier[J]. J Membrane Sci, 2001, 192(1): 177 -185.
[29] SHARMA B, MYUNG J. Pd-based ternary alloys used for gas sensing applications: a review[J]. Int J Hydrog Energy, 2019, 44(57): 30499-30510.
[30] SUZUKI A, YUKAWA H. A review for consistent analysis of hydrogen permeability through sense metallic membranes [J]. Membranes, 2020, 10(6), 120-139.
[31] FERNANDEZ E, HELMI A, MEDRANO J A, et al. Palladium based membranes and membrane reactors for hydrogen production and purification: an overview of research activities at tecnalia and TU/e[J]. Int J Hydrog Energy, 2017, 42(19): 13763 -13776.
[32] 施力, 陈大博. 无机膜的应用与展望[J]. 功能材料, 1994, 25(5): 475-479
[33] BOSKO M L, FONTANAA D, TARDITI A, et al. Advances in hydrogen selective membranes based on palladium ternary alloys[J]. Int J Hydrog Energy, 2021, 46(29): 15572-15594.
[34] 黄 彦 , 李 雪 , 范益群 , 等 . 透 氢 钯 复 合 膜 的 原 理 、 制 备 及 表 征 [J].化学进展 , 2006(Z1): 230-238.
[35] AL-MUFACHI N A, REES N V, STEINBERGER-WILKENS R, et al. Hydrogen selective membranes: a review of palladium-based dense metal membranes[J]. Renew Sust Energ Rev, 2015, 47: 540-551.
[36] YUN S, OYAMA S T. Correlations in palladium membranes for hydrogen se paration: a review[J]. J Membrane Sci, 2011, 375(1-2): 28-45.
[37] ALBA A P, DAVID P T, MARTIN V, et al. Recent advances in Pd-based membranes for membrane reactors[J]. Molecules, 2017, 22(1): 51-103.
[38] ADAMS B D, CHEN A. The role of palladium in a hydrogen economy[J]. Mater Today, 2011, 14(6): 282-289.
[39] BASILE A, GALLUCCI F, TOSTI S. Synthesis, characterization, and applications of palladium membranes[J]. Membrane Sci Technol, 2008, 13(9-10):255-323.
[40] DOLAN M.D. Non-Pd bcc alloy membranes for industrial hydrogen separation[J]. J Membrane Sci, 2010, 362(1-2): 12-28.
[41] BASILE A. Hydrogen production using Pd-based membrane reactors for fuel cells[J]. Top in Cata, 2008, 51(1-4): 107-122.
[42] BASILE A, CHIAPPETTA G, TOSTI S, et al. Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor[J]. Sep Purif Technol, 2001, 25(1): 549-571.
[43] SUZUKI A, YUKAWA H. A review for consistent snalysis of hydrogen permeability through dense metallic membranes[J]. Membranes, 2020, 10(6), 120-139.
[44] 马玉钰, 李慧. 钯银合金膜制备研究进展[J]. 天然气化工(C1 化学与化工), 2020, 45(05): 115-120.
[45] CONDE J J, MAROÑO M, JOSÉ MARÍA SÁNCHEZ-HERVÁS. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties[J]. Sep and Purif Rev, 2016, 46(2): 152-177.
[46] BURKE M L, MADIX R J. Hydrogen on Pd(100)-S: the effect of sulfur on precursor mediated adsorption and desorption[J]. Surf Sci, 1990, 237(1-3): 1-19.
[47] CASTRO F J, MEYER G, ZAMPIERI G. Effects of sulfur poisoning on hydrogen desorption from palladium[J]. J Alloys Compd, 2002, 330-332: 612-616.
[48] PATI S, ASHOK J, DEWANGAN N, et al. Ultra-thin (1 μm) Pd–Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications[J]. J Membrane Sci, 2019, 595: 117496-117503.
[49] 李梦珠. 陶瓷修饰多孔 316L 不锈钢表面钯膜的制备与性能表征[D]. 北京有色金属研究总院材料科学与工程学科硕士学位论文, 2019: 20-23.
[50] MORREALE B D, CIOCCO M V, HOWARD B H, et al. Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures[J]. J Membrane Sci, 2004, 241(2): 219-224.
[51] IYOHA O, ENICK R, KILLMEYER R, et al. The influence of hydrogen sulfide -to hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd –Cu membranes[J]. J Membrane Sci, 2007, 305(1-2): 77-92.
[52] GALLUCCI F, FERNANDEZ E, CORENGIA P, et al. Recent advances on membranes and membrane reactors for hydrogen production[J]. Chem Eng Sci, 2013, 92(14): 40-66.
[53] SONWANE C G, WILCOX J, MA Y H. Achieving optimum hydrogen permeability in PdAg and PdAu alloys[J]. J Chem Phys, 2006, 125(18): 184714-184724.
[54] FLANAGAN T B, WANG D. Hydrogen permeation through fcc Pd–Au alloy membranes[J]. J Phys Chem C, 2011, 115(23): 11618-11623.
[55] CHEN C H, MA Y H. The effect of H2S on the performance of Pd and Pd/Au composite membrane[J]. J Membrane Sci, 2010, 362(1–2): 535-544.
[56] GADE S K, DEVOSS S J, COULTER K E, et al. Palladium–gold membranes in mixed gas streams with hydrogen sulfide: effect of alloy content and fabrication technique[J]. J Membrane Sci, 2011, 378(1-2): 35-41.
[57] MATOLIN V, REBHOLZAND M, KRUSE N. Defect-induced dissociation of CO on palladium[J]. Surf Sci, 1991, 245(3): 233-243
[58] ELEY D D, MOORE P B. The adsorption and reaction of CO and O2 on Pd-Au alloy wires[J]. Surf Sci Letters, 1981, 111(2): A389-A390.
[59] LUNDIN S T B, PATKI N S, ZHANG ZY, et al. PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO[J]. J Membrane Sci, 2020, 611: 118371-118381.
[60] DUNBAR Z W, LEE I C. Effects of elevated temperatures and contaminated hydrogen gas mixtures on novel ultrathin palladium composite membranes[J]. Int J Hydrog Energy, 2017, 42(49): 29310-29319.
[61] GIELENS F C, KNIBBELER R, DUYSINX P, et al. Influence of steam and carbon dioxide on the hydrogen flux through thin Pd/Ag and Pd membranes[J]. J Membrane Sci, 2006, 279(1-2): 176-185.
[62] ZENG GF, JIA HY, GOLDBACH A, et al. Hydrogen-induced high-temperature segregation in palladium silver membranes[J]. Phys Chem Chem Phys, 2014, 16 :25330-25336.
[63] 裴皓天, 张永军, 李文鹏. 钯膜分离氢过程中浓差极化的数学建模[J]. 天然气化工(C1 化学与化工), 2009, 34(01): 46-50.
[64] CATALANO J, BASCHETTI M G, SARTI G C, et al. Hydrogen permeation in palladium-based membranes in the presence of carbon monoxide[J]. J Membrane Sci, 2010, 362(1–2): 221-233.
[65] MORI N, NAKAMURA T, NODA K I, et al. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane[J]. Ind Eng Chem Res, 2007, 46(7): 1952-1958.
[66] ZHANG J, LIU D, HE M, et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes [J]. J Membrane Sci, 2006, 274(1): 83-91.
[67] CARAVELLA A, BARBIERI G, DRIOLI E. Concentration polarization analysis in self-supported Pd-based membranes[J]. Sep Purif Technol, 2009, 66(3): 613-624.
[68] 卢成壮, 张瑞云, 程健, 等. CO2 对钯复合膜透氢性能影响[J].热力发电, 2019, 48(07): 142-148.
[69] HOU K, HUGHES R. The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes[J]. J. Membrane Sci, 2002, 206(1-2):119-130.
[70] ZAFEIRATOS S, PICCININ S, TESCHNER D. Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment[J]. Cheminform, 2012, 2(44): 1787-1801.
[71] BOSKO M L, FONTANA A D, TARDITI A, ET AL. Advances in hydrogen selective membranes based on palladium ternary alloys[J]. Int J Hydrog Energy, 2021, 46(29): 15572-15594.
[72] ZHANG XL, WANG W, JIE L, et al. Hydrogen transport through thin palladium copper alloy composite membranes at low temperatures[J]. Thin Solid Films, 2008, 516(8): 1849-1856.
[73] CHENG F, HE X, CHEN ZX, et al. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys[J]. J Alloy Compd, 2015, 648: 1090-1096.
[74] ZBIGNIEW K. Direct observation of chemisorption induced changes in concentration profile in Pd–Au alloy nanosystems via in situ X-ray powder diffraction[J]. Phys Chem Chem Phys, 2004, 6(1): 193-199
[75] ZHAO M, BROUWER J C, SLOOF W G, et al. Surface segregation of Pd–Cu alloy in various gas atmospheres[J]. Int J Hydrog Energy, 2020, 45(41): 21567-21572.
[76] MIGUEL C V, MENDES A, TOSTI S, et al. Effect of CO and CO2 on H2 permeation through finger-like Pd-Ag membranes [J]. Int J Hydrog Energy, 2012, 37(17): 12680-12687.
[77] KUROKAWA H, YAKABE H, YASUDA I, et al. Inhibition effect of CO on hydrogen permeability of Pd–Ag membrane applied in a microchannel module configuration[J]. Int J. Hydrog Energy, 2014, 39(30): 17201-17209.
[78] PEREZ P, CORNAGLIA C A, MENDES A, et al. Surface effects and CO/CO2 influence in the H2 permeation through a Pd-Ag membrane: a comprehensive model[J]. Int J Hydrog Energy, 2015, 40(20): 6566-6572.
[79] CARAVELLA A, BARBIERI G, DRIOLI E. Concentration polarization analysis in self-supported Pd-based membranes[J]. Sep Purif Technol, 2009, 66(3): 613-624.
[80] CARAVELLA A, SCURA F, BARBIERI G, et al. Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient[J]. J Phys Chem B, 2010, 114(38): 12264-12276.
[81] YUE L, CHEN C, LI J, et al. Inhibition effect of CO on hydrogen permeation through a Pd/Al2O3 composite membrane: a comprehensive study on concentration polarization and competitive adsorption effect[J]. Fusion Sci Technol, 2020, 76(5): 680 -689.
[82] CHEN H N, OTHMER D F. New generalized equation for gas diffusion coefficient[J]. J Chem Eng Data, 1962, 7(1): 2154-2161.
[83] MORI N, NAKAMURA T, NODA K I, et al. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane[J]. Ind Eng Chem Res, 2007, 46(7): 1952-1958.
[84] CHEN W H. Hydrogen permeation measurements of Pd and Pd-Cu membranes using dynamic pressure difference method[J]. Int J Hydrog Energy, 2011, 36(15): 9355 -9366.
[85] DUNBAR Z W. Hydrogen purification of synthetic water gas shift gases using microstructured palladium membranes[J]. J Power Sources, 2015, 297(30): 525-533.
[86] BASILE A, GALLUCCI F. Current trends and future developments on (bio -) membranes: recent advances in metallic membranes[M]. Susan Dennis, 2020: 46 -50.
[87] WANG W, PAN X, ZHANG X, et al. The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes[J]. Sep Purif Technol, 2007, 54(2): 262-271.
[88] TOSTO E, MARTINEZ-DIAZ D, SANZ R, et al. Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification[J]. Fuel Process Technol, 2020, 213: 106661-106674.
[89] ZHANG J, LIU D Y, HE M F, et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes [J]. J Membrane Sci, 2006, 274(1): 83-91.
[90] LI H, GOLDBACH A, LI W, et al. PdC formation in ultra-thin Pd membranes during separation of H2/CO mixtures[J]. J. Membrane Sci., 2007, 299(1-2):130-137.
[91] 阮文, 罗文浪, 张莉, 等. CO2 在 Pd 表面吸附的热力学[J]. 强激光与粒子束, 2009, 21(12): 1908-1912.
[92] FONTANA A D, SIRINI N, CORNAGLIA L M, et al. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S[J]. J Membrane Sci, 2018, 563: 351-359.
[93] BARBIERI G, SCURA F, LENTINI F, et al. A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd–Ag membranes[J]. Sep Purif Technol, 2008, 61(2): 217-224.
[94] NAKAJIMA T, KUME T, IKEDA Y, et al. Effect of concentration polarization on hydrogen production performance of ceramic-supported Pd membrane module[J]. Int J. Hydrog Energy, 2015, 40(35): 11451-11456.
[95] O’BRIEN C P, LEE I C. CO Poisoning and CO hydrogenation on the surface of Pd hydrogen separation membranes[J]. J Phys Chem C, 2017, 121(31): 16864-16871.
[96] ZHANG K, WAY J D. Palladium-copper membranes for hydrogen separation[J]. Sep Purif Technol, 2017, 186: 39-44.
[97] WU TP, KADEN W E, KUNKEL W A, et al. Size-dependent oxidation of Pdn(n≤13) on alumina/NiAl(110): Correlation with Pd core level binding energies[J]. Surf Sci, 2009, 603(17): 2764-2770
[98] PADAMA A, KASAI H, BUDHI Y W. Hydrogen absorption and hydrogen-induced reverse segregation in palladium–silver surface[J]. Int. J. Hydrog Energy, 2013, 38(34): 14715-14724
修改评论