中文版 | English
题名

富氢气体纯化过程中钯膜的抑制作用与偏析现象研究

其他题名
INHIBITION AND SEGREGATION PHENOMENA OF THE PALLADIUM MEMBRANE IN THE PURIFICATION OF HYDROGEN-RICH GASES
姓名
姓名拼音
ZHAO Hang
学号
11930101
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
刘科
导师单位
化学系
论文答辩日期
2022-05-12
论文提交日期
2022-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氢气作为一种清洁、高效、可持续的能源,在我国能源结构中占据重 要地位。液体甲醇比氢气更易于储运,结合甲醇与水蒸汽在线重整制氢, 可在应用端便捷地使用氢气。通过重整得到的富氢气体中仍含有 CO2、CO 等杂质,需要使用钯膜等分离方法对富氢气体进行纯化。然而,钯膜的纯 化效果会随着纯化温度、气体组分浓度而变化,从而导致钯膜的纯化性能 下降。为进一步阐明钯膜在富氢气体纯化过程中性能下降的机理,分析不 同机理作用的条件和范围,明确钯膜操作适宜的温度边界,本论文针对钯 膜纯化富氢气体过程中的抑制作用和偏析现象,分别开展以下两部分研究: 选取 Pd-Au 合金膜管作为研究对象,以 CO2、CO 作为非渗透气体组分, 通过实验研究非渗透气体组分浓度、纯化温度对钯膜氢渗透过程中抑制作 用的影响。使用 Caravella 模型计算浓差极化作用系数、竞争吸附作用系数、 综合抑制作用系数,以量化并分析各类作用的大小。研究结果表明:三种 抑制作用与非渗透组分浓度均呈正相关。随着纯化温度升高,浓差极化作 用均无明显变化,而 CO2 的竞争吸附作用在高浓度(15%~25%)区减小。 CO2 的综合抑制作用由浓差极化作用主导,CO 的综合抑制作用由竞争吸附 作用主导。相同浓度下,CO 的综合抑制作用强于 CO2。 采用 Pd-Au 合金膜管样品作为研究对象,分析不同气氛、温度下钯膜 的偏析现象。在 H2/N2、H2/CO2、H2/CO、甲醇蒸汽重整气四种气氛下, 400°C~500°C 之间对钯膜样品进行热处理,随后通过 SEM-EDX、XPS、 XRD 分析其偏析前后表面形貌、组成及晶相结构的变化。研究结果表明, 钯膜初始元素组成:85%Pd/15%Au。在四种气氛下,温度大于等于 440°C 时,均在钯膜表面观察到富 Pd 颗粒析出的偏析现象。随温度进一步升高, 富 Pd 颗粒的 Pd 含量升高、尺寸增大、数量增多,偏析程度加剧。在相同 温度下,不同气氛钯膜偏析的程度不同,由强到弱的顺序为 H2/CO、H2/N2、 H2/CO2,推测与气体分子与 Pd 之间的作用力强弱存在关联。为验证偏析对 钯膜渗氢性能的影响,展开 Pd-Au 钯膜管对甲醇蒸汽重整气的纯化实验。 结果显示,440°C 时氢通量降低,表明此温度偏析降低了钯膜渗氢性能。

其他摘要

As a clean, efficient and sustainable energy, hydrogen plays an important role in the energy structure of China. Liquid methanol is easier to store and transport than hydrogen. Combining methanol and steam reforming to produce hydrogen, hydrogen can be easily used in the application end. The hydrogen-rich gas obtained by methanol reforming still contains impurities such as CO2 and CO, so it needs to be purified by separation technology such as palladium membrane. However, the purification efficiency of palladium membrane varies with the purification temperature and concentration of gas components, which leads to the degradation of the purification performance of palladium membrane. In order to further clarify the mechanism of performance degradation of palladium membrane in the purification of hydrogen-rich gas, analyze the conditions and scope of different mechanisms, and clarify the appropriate temperature operation boundary of palladium membrane, this thesis conducted two studies respectively on the inhibition and segregation phenomenon of palladium membrane in the purification of hydrogen-rich gas. Pd-Au alloy tube was selected as the research object, and CO2 and CO were used as non-permeable gas components. The effects of non-permeable gas component concentration and purification temperature on the inhibition of hydrogen penetration of palladium film were studied experimentally. Car avella model was used to calculate the concentration polarization coefficient, competitive adsorption coefficient and comprehensive inhibition coefficient to quantify and analyze the magnitude of various effects. The results showed that the three kinds of inhibition effects were positively correlated with the concentration of non-permeable components. With the increase of purification temperature, concentration polarization effect did not change significantly, while the competitive adsorption effect of CO2 decreased in the high concentration (15%-25%) region. The comprehensive inhibition effect of CO2 was dominated by concentration polarization effect, and the comprehensive inhibition effect of CO was dominated by competitive adsorption effect. At the same concentration,the comprehensive inhibition effect of CO was stronger than that of CO2. Pd-Au alloy tube samples were used as the research object to analyze the segregation phenomenon of Pd membrane under different atmosphere and temperature. Palladium membrane samples were heat treated at 400°C~500°C in H2/N2, H2/CO2, H2/CO and methanol steam reformate. The surface morphology, surface composition and crystal phase structure of palladium film samples were analyzed by SEM-EDX, XPS and XRD. The results showed that initial element composition of Pd membrane is 85%Pd/15%Au. The segregation of Pd-rich particles was observed on the surface of Pd membrane at temperatures greater than or equal to 440°C in four different atmospheres. With the increase of temperature, the Pd content, size and quantity of Pd-rich particles increase, and the degree of segregation intensifies. At the same temperature, the segregation degree of Pd membrane in different atmospheres is different, and the order from strong to weak is H2/CO, H2/N2, H2/CO2, which is speculated to be related to the strength of the interaction between Pd and gas molecules. In order to verify the effect of segregation on the hydrogenation performance of palladium membrane, the purification experiment of Pd-Au palladium membrane tube on methanol steam reformate was carried out. The results show that the hydrogen flux of palladium membrane decreased at 440°C, indicating that segregation reduced the hydrogen permeability of palladium film at this temperature.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] DAWSON J K. Prospects for hydrogen as an energy resource[J]. Nature, 1974, 249(5459): 724-726.
[2] 英荷壳牌石油公司. BP 世界能源统计年鉴 2021 版[M].伦敦: 英荷壳牌石油公司, 2021: 32-39.
[3] 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(09):3248-3255.
[4] HUANG Y, LIU Q, JIN XX, et al. Coating the porous Al 2O3 substrate with a natural mineral of nontronite-15A for fabrication of hydrogen-permeable palladium membranes[J]. Int J Hydrog Energy, 2020, 45(12): 7412-7422.
[5] PATI S, JAT R A, ANAND N S, et al. Pd-Ag-Cu dense metallic membrane for hydrogen isotope purification and recovery at low pressures[J]. J Membrane Sci, 2017, 522: 151-158.
[6] MA R, CASTRO-DOMINGUEZ B, G. DIXON A, et al. Scalability of multitube membrane modules for hydrogen separation: technical considerations, issues and solutions[J]. J Membrane Sci, 2018, 564: 887-896.
[7] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renew Sust Energ Rev, 2017, 67: 597-611.
[8] NIAKOLAS D K, DALETOU M, NEOPHYTIDES S G, et.al. Fuel cells are a commercially viable alternative for the production of “clean” energy[J]. Ambio,2016,45(1): 32-37.
[9] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861):345-352.
[10] NAJJAR Y. Hydrogen safety: The road toward green technology[J]. Int J Hydrog Energy, 2013, 38(25): 10716-10728.
[11] SHARMA R, KUMAR A, UPADHYAY R K. Performance comparison of methanol steam reforming integrated to Pd-Ag membrane: membrane reformer vs. membrane separator[J]. Sep Purif Technol, 2017, 183: 194-203.
[12] 代磊, 李明, 胡鸣若. 用于 PEMFC 的天然气水蒸气制氢系统[J]. 化工学报, 2009, 60(S1): 90-94.
[13] 李亮荣, 李秋平, 艾盛, 等. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程, 2021, 38(11): 1-6.
[14] PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2007, 107(10): 3992-4021.
[15] 苏海兰, 史立杰, 高珠, 等. 甲醇水蒸气重整制氢研究进展[J]. 工业催化, 2019, 27(04): 28-31.
[16] CHEN L, QI Z, PENG X, et al. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts[J]. J Am Chem Soc, 2021, 143: 12074-12081
[17] 李佩佩, 翟燕萍, 王先鹏, 等. 浅谈氢气提纯方法的选取[J]. 天然气化工(C1 化学与化工), 2020, 45(03): 115-119.
[18] DU ZM, LIU CM, ZHAI JX, et al. A review of hydrogen purification technologies for fuel cell vehicles[J]. Catalysts, 2021, 11(3): 393-409
[19] 张勇, 胡旭, 杨中贵, 等. 探究变压吸附气体分离的技术及应用[J]. 当代化工研究, 2022(04): 48-50.
[20] 王永锋, 张雷. 氢气提纯工艺及技术选择[J]. 化工设计, 2015, 25(02): 14-17.
[21] ADHIKARI S, FERNANDO S. Hydrogen membrane separation techniques[J]. Ind Eng Chem Res, 2006, 45(3):875-881.
[22] BERNARDO G, ARAÚJO T, LOPES T D S. Recent advances in membrane technologies for hydrogen purification[J]. Int J Hydrog Energy, 2020, 45(12): 7313-7338.
[23] LEE C H, JO Y S, PARK Y, et al. Unconventional hydrogen permeation behavior of Pd/bcc composite membranes and significance of surface reaction kinetics[J]. J Membrane Sci, 2020, 595: 117506-117515
[24] PETERS T, CARAVELLA A. Pd-based membranes: overview and perspectives[J]. Membranes, 2019, 9(2): 25-29.
[25] RAHIMPOUR M R, SAMIMI F, BABAPOOR A, et al. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review[J]. Chem Eng Process, 2017, 121: 24-49.
[26] Cardoso S, Azenha I, Lin Z, et al. Inorganic membranes for hydrogen separation[J]. Sep Purif Ref, 2018, 47(3): 229-266.
[27] GRAHAM T. On the absorption and dialytic separation of gases by colloid septa[J]. Proc. Royal Soc, 1866, 83(1): 39-41.
[28] NAM S E, LEE K H. Hydrogen separation by Pd alloy composite membranes: Introduction of diffusion barrier[J]. J Membrane Sci, 2001, 192(1): 177 -185.
[29] SHARMA B, MYUNG J. Pd-based ternary alloys used for gas sensing applications: a review[J]. Int J Hydrog Energy, 2019, 44(57): 30499-30510.
[30] SUZUKI A, YUKAWA H. A review for consistent analysis of hydrogen permeability through sense metallic membranes [J]. Membranes, 2020, 10(6), 120-139.
[31] FERNANDEZ E, HELMI A, MEDRANO J A, et al. Palladium based membranes and membrane reactors for hydrogen production and purification: an overview of research activities at tecnalia and TU/e[J]. Int J Hydrog Energy, 2017, 42(19): 13763 -13776.
[32] 施力, 陈大博. 无机膜的应用与展望[J]. 功能材料, 1994, 25(5): 475-479
[33] BOSKO M L, FONTANAA D, TARDITI A, et al. Advances in hydrogen selective membranes based on palladium ternary alloys[J]. Int J Hydrog Energy, 2021, 46(29): 15572-15594.
[34] 黄 彦 , 李 雪 , 范益群 , 等 . 透 氢 钯 复 合 膜 的 原 理 、 制 备 及 表 征 [J].化学进展 , 2006(Z1): 230-238.
[35] AL-MUFACHI N A, REES N V, STEINBERGER-WILKENS R, et al. Hydrogen selective membranes: a review of palladium-based dense metal membranes[J]. Renew Sust Energ Rev, 2015, 47: 540-551.
[36] YUN S, OYAMA S T. Correlations in palladium membranes for hydrogen se paration: a review[J]. J Membrane Sci, 2011, 375(1-2): 28-45.
[37] ALBA A P, DAVID P T, MARTIN V, et al. Recent advances in Pd-based membranes for membrane reactors[J]. Molecules, 2017, 22(1): 51-103.
[38] ADAMS B D, CHEN A. The role of palladium in a hydrogen economy[J]. Mater Today, 2011, 14(6): 282-289.
[39] BASILE A, GALLUCCI F, TOSTI S. Synthesis, characterization, and applications of palladium membranes[J]. Membrane Sci Technol, 2008, 13(9-10):255-323.
[40] DOLAN M.D. Non-Pd bcc alloy membranes for industrial hydrogen separation[J]. J Membrane Sci, 2010, 362(1-2): 12-28.
[41] BASILE A. Hydrogen production using Pd-based membrane reactors for fuel cells[J]. Top in Cata, 2008, 51(1-4): 107-122.
[42] BASILE A, CHIAPPETTA G, TOSTI S, et al. Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor[J]. Sep Purif Technol, 2001, 25(1): 549-571.
[43] SUZUKI A, YUKAWA H. A review for consistent snalysis of hydrogen permeability through dense metallic membranes[J]. Membranes, 2020, 10(6), 120-139.
[44] 马玉钰, 李慧. 钯银合金膜制备研究进展[J]. 天然气化工(C1 化学与化工), 2020, 45(05): 115-120.
[45] CONDE J J, MAROÑO M, JOSÉ MARÍA SÁNCHEZ-HERVÁS. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties[J]. Sep and Purif Rev, 2016, 46(2): 152-177.
[46] BURKE M L, MADIX R J. Hydrogen on Pd(100)-S: the effect of sulfur on precursor mediated adsorption and desorption[J]. Surf Sci, 1990, 237(1-3): 1-19.
[47] CASTRO F J, MEYER G, ZAMPIERI G. Effects of sulfur poisoning on hydrogen desorption from palladium[J]. J Alloys Compd, 2002, 330-332: 612-616.
[48] PATI S, ASHOK J, DEWANGAN N, et al. Ultra-thin (1 μm) Pd–Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications[J]. J Membrane Sci, 2019, 595: 117496-117503.
[49] 李梦珠. 陶瓷修饰多孔 316L 不锈钢表面钯膜的制备与性能表征[D]. 北京有色金属研究总院材料科学与工程学科硕士学位论文, 2019: 20-23.
[50] MORREALE B D, CIOCCO M V, HOWARD B H, et al. Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures[J]. J Membrane Sci, 2004, 241(2): 219-224.
[51] IYOHA O, ENICK R, KILLMEYER R, et al. The influence of hydrogen sulfide -to hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd –Cu membranes[J]. J Membrane Sci, 2007, 305(1-2): 77-92.
[52] GALLUCCI F, FERNANDEZ E, CORENGIA P, et al. Recent advances on membranes and membrane reactors for hydrogen production[J]. Chem Eng Sci, 2013, 92(14): 40-66.
[53] SONWANE C G, WILCOX J, MA Y H. Achieving optimum hydrogen permeability in PdAg and PdAu alloys[J]. J Chem Phys, 2006, 125(18): 184714-184724.
[54] FLANAGAN T B, WANG D. Hydrogen permeation through fcc Pd–Au alloy membranes[J]. J Phys Chem C, 2011, 115(23): 11618-11623.
[55] CHEN C H, MA Y H. The effect of H2S on the performance of Pd and Pd/Au composite membrane[J]. J Membrane Sci, 2010, 362(1–2): 535-544.
[56] GADE S K, DEVOSS S J, COULTER K E, et al. Palladium–gold membranes in mixed gas streams with hydrogen sulfide: effect of alloy content and fabrication technique[J]. J Membrane Sci, 2011, 378(1-2): 35-41.
[57] MATOLIN V, REBHOLZAND M, KRUSE N. Defect-induced dissociation of CO on palladium[J]. Surf Sci, 1991, 245(3): 233-243
[58] ELEY D D, MOORE P B. The adsorption and reaction of CO and O2 on Pd-Au alloy wires[J]. Surf Sci Letters, 1981, 111(2): A389-A390.
[59] LUNDIN S T B, PATKI N S, ZHANG ZY, et al. PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO[J]. J Membrane Sci, 2020, 611: 118371-118381.
[60] DUNBAR Z W, LEE I C. Effects of elevated temperatures and contaminated hydrogen gas mixtures on novel ultrathin palladium composite membranes[J]. Int J Hydrog Energy, 2017, 42(49): 29310-29319.
[61] GIELENS F C, KNIBBELER R, DUYSINX P, et al. Influence of steam and carbon dioxide on the hydrogen flux through thin Pd/Ag and Pd membranes[J]. J Membrane Sci, 2006, 279(1-2): 176-185.
[62] ZENG GF, JIA HY, GOLDBACH A, et al. Hydrogen-induced high-temperature segregation in palladium silver membranes[J]. Phys Chem Chem Phys, 2014, 16 :25330-25336.
[63] 裴皓天, 张永军, 李文鹏. 钯膜分离氢过程中浓差极化的数学建模[J]. 天然气化工(C1 化学与化工), 2009, 34(01): 46-50.
[64] CATALANO J, BASCHETTI M G, SARTI G C, et al. Hydrogen permeation in palladium-based membranes in the presence of carbon monoxide[J]. J Membrane Sci, 2010, 362(1–2): 221-233.
[65] MORI N, NAKAMURA T, NODA K I, et al. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane[J]. Ind Eng Chem Res, 2007, 46(7): 1952-1958.
[66] ZHANG J, LIU D, HE M, et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes [J]. J Membrane Sci, 2006, 274(1): 83-91.
[67] CARAVELLA A, BARBIERI G, DRIOLI E. Concentration polarization analysis in self-supported Pd-based membranes[J]. Sep Purif Technol, 2009, 66(3): 613-624.
[68] 卢成壮, 张瑞云, 程健, 等. CO2 对钯复合膜透氢性能影响[J].热力发电, 2019, 48(07): 142-148.
[69] HOU K, HUGHES R. The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes[J]. J. Membrane Sci, 2002, 206(1-2):119-130.
[70] ZAFEIRATOS S, PICCININ S, TESCHNER D. Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment[J]. Cheminform, 2012, 2(44): 1787-1801.
[71] BOSKO M L, FONTANA A D, TARDITI A, ET AL. Advances in hydrogen selective membranes based on palladium ternary alloys[J]. Int J Hydrog Energy, 2021, 46(29): 15572-15594.
[72] ZHANG XL, WANG W, JIE L, et al. Hydrogen transport through thin palladium copper alloy composite membranes at low temperatures[J]. Thin Solid Films, 2008, 516(8): 1849-1856.
[73] CHENG F, HE X, CHEN ZX, et al. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys[J]. J Alloy Compd, 2015, 648: 1090-1096.
[74] ZBIGNIEW K. Direct observation of chemisorption induced changes in concentration profile in Pd–Au alloy nanosystems via in situ X-ray powder diffraction[J]. Phys Chem Chem Phys, 2004, 6(1): 193-199
[75] ZHAO M, BROUWER J C, SLOOF W G, et al. Surface segregation of Pd–Cu alloy in various gas atmospheres[J]. Int J Hydrog Energy, 2020, 45(41): 21567-21572.
[76] MIGUEL C V, MENDES A, TOSTI S, et al. Effect of CO and CO2 on H2 permeation through finger-like Pd-Ag membranes [J]. Int J Hydrog Energy, 2012, 37(17): 12680-12687.
[77] KUROKAWA H, YAKABE H, YASUDA I, et al. Inhibition effect of CO on hydrogen permeability of Pd–Ag membrane applied in a microchannel module configuration[J]. Int J. Hydrog Energy, 2014, 39(30): 17201-17209.
[78] PEREZ P, CORNAGLIA C A, MENDES A, et al. Surface effects and CO/CO2 influence in the H2 permeation through a Pd-Ag membrane: a comprehensive model[J]. Int J Hydrog Energy, 2015, 40(20): 6566-6572.
[79] CARAVELLA A, BARBIERI G, DRIOLI E. Concentration polarization analysis in self-supported Pd-based membranes[J]. Sep Purif Technol, 2009, 66(3): 613-624.
[80] CARAVELLA A, SCURA F, BARBIERI G, et al. Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient[J]. J Phys Chem B, 2010, 114(38): 12264-12276.
[81] YUE L, CHEN C, LI J, et al. Inhibition effect of CO on hydrogen permeation through a Pd/Al2O3 composite membrane: a comprehensive study on concentration polarization and competitive adsorption effect[J]. Fusion Sci Technol, 2020, 76(5): 680 -689.
[82] CHEN H N, OTHMER D F. New generalized equation for gas diffusion coefficient[J]. J Chem Eng Data, 1962, 7(1): 2154-2161.
[83] MORI N, NAKAMURA T, NODA K I, et al. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane[J]. Ind Eng Chem Res, 2007, 46(7): 1952-1958.
[84] CHEN W H. Hydrogen permeation measurements of Pd and Pd-Cu membranes using dynamic pressure difference method[J]. Int J Hydrog Energy, 2011, 36(15): 9355 -9366.
[85] DUNBAR Z W. Hydrogen purification of synthetic water gas shift gases using microstructured palladium membranes[J]. J Power Sources, 2015, 297(30): 525-533.
[86] BASILE A, GALLUCCI F. Current trends and future developments on (bio -) membranes: recent advances in metallic membranes[M]. Susan Dennis, 2020: 46 -50.
[87] WANG W, PAN X, ZHANG X, et al. The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes[J]. Sep Purif Technol, 2007, 54(2): 262-271.
[88] TOSTO E, MARTINEZ-DIAZ D, SANZ R, et al. Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification[J]. Fuel Process Technol, 2020, 213: 106661-106674.
[89] ZHANG J, LIU D Y, HE M F, et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes [J]. J Membrane Sci, 2006, 274(1): 83-91.
[90] LI H, GOLDBACH A, LI W, et al. PdC formation in ultra-thin Pd membranes during separation of H2/CO mixtures[J]. J. Membrane Sci., 2007, 299(1-2):130-137.
[91] 阮文, 罗文浪, 张莉, 等. CO2 在 Pd 表面吸附的热力学[J]. 强激光与粒子束, 2009, 21(12): 1908-1912.
[92] FONTANA A D, SIRINI N, CORNAGLIA L M, et al. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S[J]. J Membrane Sci, 2018, 563: 351-359.
[93] BARBIERI G, SCURA F, LENTINI F, et al. A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd–Ag membranes[J]. Sep Purif Technol, 2008, 61(2): 217-224.
[94] NAKAJIMA T, KUME T, IKEDA Y, et al. Effect of concentration polarization on hydrogen production performance of ceramic-supported Pd membrane module[J]. Int J. Hydrog Energy, 2015, 40(35): 11451-11456.
[95] O’BRIEN C P, LEE I C. CO Poisoning and CO hydrogenation on the surface of Pd hydrogen separation membranes[J]. J Phys Chem C, 2017, 121(31): 16864-16871.
[96] ZHANG K, WAY J D. Palladium-copper membranes for hydrogen separation[J]. Sep Purif Technol, 2017, 186: 39-44.
[97] WU TP, KADEN W E, KUNKEL W A, et al. Size-dependent oxidation of Pdn(n≤13) on alumina/NiAl(110): Correlation with Pd core level binding energies[J]. Surf Sci, 2009, 603(17): 2764-2770
[98] PADAMA A, KASAI H, BUDHI Y W. Hydrogen absorption and hydrogen-induced reverse segregation in palladium–silver surface[J]. Int. J. Hydrog Energy, 2013, 38(34): 14715-14724

所在学位评定分委会
化学系
国内图书分类号
TQ116.2,TQ051.893
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353162
专题理学院_化学系
推荐引用方式
GB/T 7714
赵杭. 富氢气体纯化过程中钯膜的抑制作用与偏析现象研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930101-赵杭-化学系.pdf(4528KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵杭]的文章
百度学术
百度学术中相似的文章
[赵杭]的文章
必应学术
必应学术中相似的文章
[赵杭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。