[1] XIE X, SZILAGYI I, ZHAI J, et al. Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation [J]. Acs Sensors, 2016: 516.
[2] ZHAI J, YUAN D, XIE X. Ionophore-based ion-selective electrodes: signal transduction and amplification from potentiometry [J]. Sensors & Diagnostics, 2022.
[3] MISTLBERGER G, CRESPO G A, BAKKER E. Ionophore-Based Optical Sensors [J]. Annual Review of Analytical Chemistry, 2014, 7(1): 483-512.
[4] XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale [J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[5] WANG R, ZHOU Y, GHANBARI GHALEHJOUGHI N, et al. Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics [J]. Analytical Chemistry, 2021, 93(40): 13694-702.
[6] BAKKER E, BÜHLMANN P, PRETSCH E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics [J]. Chemical Reviews, 1997, 97(8): 3083-132.
[7] ZOU X U, ZHEN X V, CHEONG J H, et al. Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact [J]. Analytical Chemistry, 2014, 86(17): 8687-92.
[8] XIE X, ZHAI J, JAROLÍMOVÁ Z, et al. Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres [J]. Analytical Chemistry, 2016, 88(6): 3015-8.
[9] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores [J]. Analytical Chemistry, 2013, 85(20): 9932-8.
[10] XIE X, ZHAI J, CRESPO G A, et al. Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode [J]. Analytical Chemistry, 2014, 86(17): 8770-5.
[11] XIE X, ZHAI J, BAKKER E. pH Independent Nano-Optode Sensors Based on Exhaustive Ion-Selective Nanospheres [J]. Analytical Chemistry, 2014, 86(6): 2853-6.
[12] XIE X, SZILAGYI I, ZHAI J, et al. Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation [J]. ACS Sensors, 2016, 1(5): 516-20.
[13] BABAMIRI B, BAHARI D, SALIMI A. Highly sensitive bioaffinity electrochemilumiescence sensors: Recent advances and future directions [J]. Biosensors and Bioelectronics, 2019, 142: 111530.
[14] CHEN M, NING Z, CHEN K, et al. Recent Advances of Electrochemiluminescent System in Bioassay [J]. Journal of Analysis and Testing, 2020, 4(2): 57-75.
[15] MIAO W. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chemical Reviews, 2008, 108(7): 2506-53.
[16] LI L, CHEN Y, ZHU J-J. Recent Advances in Electrochemiluminescence Analysis [J]. Analytical Chemistry, 2017, 89(1): 358-71.
[17] MA C, CAO Y, GOU X, et al. Recent Progress in Electrochemiluminescence Sensing and Imaging [J]. Analytical Chemistry, 2020, 92(1): 431-54.
[18] QI H, ZHANG C. Electrogenerated Chemiluminescence Biosensing [J]. Analytical Chemistry, 2020, 92(1): 524-34.
[19] WENYUEGAO, MUHAMMADSAQIB, LIMINGQI, et al. Recent advances in electrochemiluminescence devices for point-of-care testing [J]. Current Opinion in Electrochemistry, 2017.
[20] LIU Z, QI W, XU G. ChemInform Abstract: Recent Advances in Electrochemiluminescence [J]. Cheminform, 2015, 46(29): no-no.
[21] 贾伯年, 俞朴, 宋爱国. 传感器技术:(第3 版) [M]. 东南大学出版社, 2007.
[22] 启黎明, 袁帆, 徐国宝. 电化学发光分析研究进展 [J]. 中国科学:化学, 2018, v.48(08): 152-63.
[23] HESARI M, DING Z. Review—Electrogenerated Chemiluminescence: Light Years Ahead [J]. Journal of the Electrochemical Society, 2016, 163(4): H3116-H31.
[24] SHI Z, LI G, HU Y. Progress on the application of electrochemiluminescence biosensor based on nanomaterials [J]. Chinese Chemical Letters, 2019.
[25] MORGAN G T, BURSTALL F H. 3. Dehydrogenation of pyridine by anhydrous ferric chloride [J]. Jchemsoc, 1932: 20-30.
[26] TOKEL N E, BARD A J. Electrogenerated chemiluminescence. IX. Electrochemistryand emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride [J]. Journal of the American Chemical Society, 1972, 94(8): 2862-3.
[27] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene [J]. Jamchemsoc, 2006, 128(24): 7720.
[28] SALAVAGIONE H J, GO?MEZ M N A, MARTI?NEZ G. Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol) [J]. Macromolecules, 2009, 42(17): 83-6.
[29] VECA, L. M, F., et al. Polymer functionalization and solubilization of carbon nanosheets [J]. CHEMICAL COMMUNICATIONS- ROYAL SOCIETY OF CHEMISTRY, 2009.
[30] MIAO W, CHOI J P, BARD A J. Electrogenerated Chemiluminescence 69: The Tri (2,2'-bipyridine)ruthenium(II), (Ru(bpy) 3 2+ )/Tri- n -propylamine (TPrA) System RevisitedA New Route Involving TPrA + Cation Radicals [J]. Journal of the American Chemical Society, 2003, 124(48): 14478-85.
[31] HE L J, WU M S, XU J J, et al. A reusable potassium ion biosensor based on electrochemiluminescence resonance energy transfer [J]. Chem Commun, 2013, 49(15): 1539-41.
[32] LU H-J, XU J-J, ZHOU H, et al. Recent advances in electrochemiluminescence resonance energy transfer for bioanalysis: Fundamentals and applications [J]. TrAC Trends in Analytical Chemistry, 2020, 122: 115746.
[33] REBECCA, Y., LAI, et al. Electrogenerated Chemiluminescence. 68. Detection of Sodium Ion with a Ruthenium(II) Complex with Crown Ether Moiety at the 3,3'- Positions on the 2,2'-Bipyridine Ligand [J]. Anal Chem, 2002, 74(3): 551–3.
[34] SODA Y, SHIBATA H, YAMADA K, et al. Selective Detection of K+ by Ion-Selective Optode Nanoparticles on Cellulosic Filter Paper Substrates [J]. ACS Applied Nano Materials, 2018, 1(4): 1792-800.
[35] KRATA A A, STELMACH E, WOJCIECHOWSKI M, et al. Insights into Primary Ion Exchange between Ion-Selective Membranes and Solution. From Altering Natural Isotope Ratios to Isotope Dilution Inductively Coupled Plasma Mass Spectrometry Studies [J]. ACS Sensors, 2020, 5(12): 3930-8.
[36] CHEN Q, LI X, WANG R, et al. Rapid Equilibrated Colorimetric Detection of Protamine and Heparin: Recognition at the Nanoscale Liquid–Liquid Interface [J]. Analytical Chemistry, 2019, 91(16): 10390-4.
[37] DU X, XIE X. Ion-Selective optodes: Alternative approaches for simplified fabrication and signaling [J]. Sensors and Actuators B: Chemical, 2021, 335: 129368.
[38] BÜHLMANN P, PRETSCH E, BAKKER E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors [J]. ChemicalReviews, 1998, 98(4): 1593-688.
[39] BAKKER E, BHAKTHAVATSALAM V, GEMENE K L. Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing [J]. Talanta, 2008, 75(3): 629-35.
[40] DENG L, ZHAI J, DU X, et al. Ionophore-Based Ion-Selective Nanospheres Basedon Monomer–Dimer Conversion in the Near-Infrared Region [J]. ACS Sensors, 2021, 6(3): 1279-85.
[41] CRESPO G A, MISTLBERGER G, BAKKER E. Electrogenerated Chemiluminescencefor Potentiometric Sensors [J]. Journal of the American Chemical Society, 2012, 134(1): 205-7.
[42] CAO S-P, HU H-M, LIANG R-P, et al. An ultrasensitive electrochemiluminescenceresonance energy transfer biosensor for divalent mercury monitoring [J]. J Electroanal Chem, 2020, 856: 113494.
[43] ZHANG J, CHEN Y, FANG D. Electrochemiluminescence in Luminol-based calciumselective nanoparticles for the determination of calcium ions [J]. Journal of Electroanalytical Chemistry, 2020, 878: 114671.
[44] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles [J]. Sensors and Actuators B: Chemical, 2020, 319: 128300.
[45] DU X, XIE X. Non-Equilibrium Diffusion Controlled Ion-Selective Optical Sensor for Blood Potassium Determination [J]. ACS Sensors, 2017: acssensors.7b00614.
[46] WANG R, DU X, ZHAI J, et al. Distance and Color Change Based Hydrogel Sensorfor Visual Quantitative Determination of Buffer Concentrations [J]. ACS Sensors, 2019, 4(4): 1017-22.
[47] SODA Y, CITTERIO D, BAKKER E. Equipment-Free Detection of K+ on MicrofluidicPaper-Based Analytical Devices Based on Exhaustive Replacement with Ionic Dye inIon-selective Capillary Sensors [J]. ACS Sensors, 2019, 4(3): 670-7.
[48] HONG G, DIAO S, ANTARIS A L, et al. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy [J]. Chemical Reviews, 2015, 115(19): 10816-906.
[49] NAUMOVA A V, MODO M, MOORE A, et al. Clinical imaging in regenerativemedicine [J]. Nat Biotechnol, 2014, 32(8): 804-18.
[50] HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedicalimaging [J]. Nature Biomedical Engineering, 2017, 1(1).
[51] NTZIACHRISTOS V. Going deeper than microscopy: the optical imaging frontier in biology [J]. Nature Methods, 2010, 7(8): 603-14.
[52] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging [J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[53] BASHKATOV A N, GENINA E A, TUCHIN V V. OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW [J]. Journal of Innovative Optical Health Sciences, 2011, 04(01): 9-38.
[54] HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain a new near-infrared window [J]. Nature Photonics, 2014, 8(9): 723-30.
[55] DIAO S, BLACKBURN J L, HONG G, et al. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm [J]. Angewandte Chemie International Edition, 2015, 54(49): 14758-62.
[56] FRANGIONI J V. In vivo near-infrared fluorescence imaging [J]. Current Opinion in Chemical Biology, 2003, 7(5): 626-34.
[57] VERBEEK F P R, SCHAAFSMA B E, TUMMERS Q R J G, et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery [J]. Surgical Endoscopy, 2014, 28(4): 1076-82.
[58] TUMMERS Q R J G, SCHEPERS A, HAMMING J F, et al. Intraoperative guidance inparathyroid surgery using near-infrared fluorescence imaging and low-dose Methylene Blue [J]. Surgery, 2015, 158(5): 1323-30.
[59] TUMMERS Q R J G, VERBEEK F P R, PREVOO H A J M, et al. First Experience on Laparoscopic Near-Infrared Fluorescence Imaging of Hepatic Uveal Melanoma Metastases Using Indocyanine Green [J]. Surgical Innovation, 2014, 22(1): 20-5.
[60] VERBEEK F P R, TUMMERS Q R J G, RIETBERGEN D D D, et al. Sentinel Lymph Node Biopsy in Vulvar Cancer Using Combined Radioactive and Fluorescence Guidance [J]. International Journal of Gynecologic Cancer, 2015, 25(6): 1086.
[61] VERBEEK FLORIS P R, VAN DER VORST JOOST R, SCHAAFSMA BOUDEWIJN E, et al. Intraoperative Near Infrared Fluorescence Guided Identification of the Ureters Using Low Dose Methylene Blue: A First in Human Experience [J]. Journal of Urology, 2013, 190(2): 574-9.
[62] MATSUI A, TANAKA E, CHOI H S, et al. Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents [J]. Surgery, 2010, 148(1): 87-95.
[63] QIAN G, WANG Z Y. Near-Infrared Organic Compounds and Emerging Applications [J]. Chemistry – An Asian Journal, 2010, 5(5): 1006-29.
[64] HILDERBRAND S A, WEISSLEDER R. Near-infrared fluorescence: application to invivo molecular imaging [J]. Current Opinion in Chemical Biology, 2010, 14(1): 71-9.
[65] ESCOBEDO J O, RUSIN O, LIM S, et al. NIR dyes for bioimaging applications [J].Current Opinion in Chemical Biology, 2010, 14(1): 64-70.
[66] TERAI T, NAGANO T. Small-molecule fluorophores and fluorescent probes forbioimaging [J]. Pflügers Archiv - European Journal of Physiology, 2013, 465(3): 347-59.
[67] WU D, CHEN L, LEE W, et al. Recent progress in the development of organic dyebased near-infrared fluorescence probes for metal ions [J]. Coordination Chemistry Reviews, 2018, 354: 74-97.
[68] TSIEN R Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry, 1980, 19(11): 2396-404.
[69] GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. Journal of Biological Chemistry, 1985, 260(6): 3440-50.
[70] MINTA A, KAO J P Y, TSIEN R Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. Journal of Biological Chemistry,1989, 264(14): 8171-8.
[71] KIYOSE K, AIZAWA S, SASAKI E, et al. Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties ofAminocyanines [J]. Chemistry – A European Journal, 2009, 15(36): 9191-200.
[72] EGAWA T, HANAOKA K, KOIDE Y, et al. Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging [J]. Journal of the American Chemical Society, 2011, 133(36): 14157-9.
[73] MINTA A, TSIEN R Y. Fluorescent indicators for cytosolic sodium* [J]. Journal ofBiological Chemistry, 1989, 264(32): 19449-57.
[74] HE H, MORTELLARO M A, LEINER M J P, et al. A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water [J]. Journal of the American Chemical Society, 2003, 125(6): 1468-9.
[75] PADMAWAR P, YAO X, BLOCH O, et al. K+ waves in brain cortex visualized usinga long-wavelength K+-sensing fluorescent indicator [J]. Nature Methods, 2005, 2(11): 825-7.
[76] SAMBATH K, LIU X, WAN Z, et al. Potassium Ion Fluorescence Probes: Structures, Properties and Bioimaging [J]. ChemPhotoChem, 2021, 5(4): 317-25.
[77] SUI B, YUE X, TICHY M G, et al. Improved Synthesis of the Triazacryptand (TAC) and its Application in the Construction of a Fluorescent TAC-BODIPY Conjugate for K+ Sensing in Live Cells [J]. European Journal of Organic Chemistry, 2015, 2015(6): 1189-92.
[78] DENG L, ZHAI J Y, DU X F, et al. Ionophore-Based Ion-Selective Nanospheres Based on Monomer-Dimer Conversion in the Near-Infrared Region [J]. Acs Sensors, 2021, 6(3): 1279-85.
[79] DU X, YANG L, HU W, et al. A Plasticizer-Free Miniaturized Optical Ion Sensing Platform with Ionophores and Silicon-Based Particles [J]. Analytical Chemistry, 2018:5818-24.
[80] RENJIE, WANG, XINFENG, et al. Graphene Quantum Dots Integrated in Ionophorebased Fluorescent Nanosensors for Na+ and K [J]. Acs Sensors, 2018.
[81] DU X, HUANG M, WANG R, et al. A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels [J]. ChemicalCommunications, 2019.
[82] TANG Y H, ZHAI J Y, CHEN Q H, et al. Ruthenium bipyridine complexes as electrochemiluminescent transducers for ionophore-based ion-selective detection [J]. Analyst, 2021, 146(22): 6955-9.
[83] DENG L, ZHAI J Y, XIE X J. Chemiluminescent Ion Sensing Platform Based on Ionophores [J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[84] LELAND J K, POWELL M J. Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine [J]. Journal of TheElectrochemical Society, 1990, 137(10): 3127-31.
[85] NOFFSINGER J B, DANIELSON N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Analytical Chemistry, 1987, 59(6): 865-8.
[86] BLACKBURN G F, SHAH H P, KENTEN J H, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clinical Chemistry, 1991, 37(9): 1534-9.
[87] MIAO W, CHOI J-P, BARD A J. Electrogenerated Chemiluminescence 69: The Tris(2,2‘-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA•+ Cation Radicals [J]. Journal of the American Chemical Society, 2002, 124(48): 14478-85.
[88] KANOUFI F, ZU Y, BARD A J. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)32+ System [J]. The Journal of Physical Chemistry B, 2001, 105(1): 210-6.
[89] ZU Y, BARD A J. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2‘)bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity [J]. Analytical Chemistry, 2000, 72(14): 3223-32.
[90] CHANG Y-L, PALACIOS R E, FAN F-R F, et al. Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles [J]. Journal of the American Chemical Society, 2008, 130(28): 8906-7.
[91] HE L, COX K A, DANIELSON N D. Chemiluminescence Detection of Amino Acids, Peptides, and Proteins Using Tris-2,2′-Bipyridine Ruthenium (III) [J]. Analytical Letters, 1990, 23(2): 195-210.
[92] DENG L, ZHAI J, XIE X. Chemiluminescent Ion Sensing Platform Based on Ionophores [J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[93] KOMATSU H, MIKI T, CITTERIO D, et al. Single Molecular Multianalyte (Ca2+, Mg2+) Fluorescent Probe and Applications to Bioimaging [J]. Journal of the American Chemical Society, 2005, 127(31): 10798-9.
[94] KUCHIBHOTLA KISHORE V, LATTARULO CARLI R, HYMAN BRADLEY T, et al. Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice [J]. Science, 2009, 323(5918): 1211-5.
[95] ZHANG H, YIN C, LIU T, et al. “Turn-on” fluorescent probe detection of Ca2+ ions and applications to bioimaging [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy, 2017, 180: 211-6.
修改评论