[1] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. http://doi.org/10.1016/j.actamat.2016.08.081.
[3] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021) 100795. http://doi.org/10.1016/j.pmatsci.2021.100795.2.7 References
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. http://doi.org/10.1002/adem.200300567.
[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375-377 (2004) 213-218. http://doi.org/10.1016/j.msea.2003.10.257.
[3] B. Cantor, Multicomponent and High Entropy Alloys, Entropy 16(9) (2014) 4749-4768. http://doi.org/10.3390/e16094749.
[4] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1-93. http://doi.org/10.1016/j.pmatsci.2013.10.001.
[5] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. http://doi.org/10.1016/j.actamat.2016.08.081.
[6] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature Reviews Materials 4(8) (2019) 515-534. http://doi.org/10.1038/s41578-019-0121-4.
[7] X. Li, Additive manufacturing of advanced multi-component alloys: Bulk metallic glasses and high entropy alloys, Advanced Engineering Materials 20(5) (2017) 1700874. http://doi.org/10.1002/adem.201700874.
[8] C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Recent advances on high-entropy alloys for 3D printing, Advanced Materials 32(26) (2020) 1903855. http://doi.org/10.1002/adma.201903855.
[9] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta Materialia 99 (2015) 93-96. http://doi.org/10.1016/j.scriptamat.2014.11.037.
[10] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds 746 (2018) 125-134. http://doi.org/10.1016/j.jallcom.2018.02.298.
[11] M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scripta Materialia 72-73 (2014) 5-8. http://doi.org/10.1016/j.scriptamat.2013.09.030.
[12] B. Cantor, Multicomponent high-entropy Cantor alloys, Progress in Materials Science 120 (2021) 100754. http://doi.org/10.1016/j.pmatsci.2020.100754.
[13] R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting, Intermetallics 94 (2018) 165-171. http://doi.org/10.1016/j.intermet.2018.01.002.
[14] Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys, Intermetallics 79 (2016) 1-11. http://doi.org/10.1016/j.intermet.2016.09.003.
[15] H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Materials Science and Engineering: A 656 (2016) 39-46. http://doi.org/10.1016/j.msea.2016.01.019.
[16] B. Jia, X. Liu, H. Wang, Y. Wu, Z. Lu, Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion, Science China Technological Sciences 61 (2017) 179-183. http://doi.org/10.1007/s11431-017-9115-5.
[17] M. Ogura, T. Fukushima, R. Zeller, P.H. Dederichs, Structure of the high-entropy alloy Al x CrFeCoNi: fcc versus bcc, Journal of Alloys and Compounds 715 (2017) 454-459. http://doi.org/10.1016/j.jallcom.2017.04.318.
[18] H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, T. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Materials Chemistry and Physics 210 (2017) 43-48. http://doi.org/10.1016/j.matchemphys.2017.05.056.
[19] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 (2015) 1-8. http://doi.org/10.1016/j.intermet.2015.01.004.
[20] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563(7732) (2018) 546-550. http://doi.org/10.1038/s41586-018-0685-y.
[21] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux 31(6) (2006) 633-648. http://doi.org/DOI 10.3166/acsm.31.633-648.
[22] E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Materialia 113 (2016) 106-109. http://doi.org/10.1016/j.scriptamat.2015.10.025.
[23] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia 96 (2015) 258-268. http://doi.org/10.1016/j.actamat.2015.06.025.
[24] N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Aging behavior of the HfNbTaTiZr high entropy alloy, Materials Letters 211 (2018) 87-90. http://doi.org/10.1016/j.matlet.2017.09.094.
[25] B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties, Acta Materialia 142 (2018) 201-212. http://doi.org/10.1016/j.actamat.2017.09.035.
[26] H. Yao, J.W. Qiao, M. Gao, J. Hawk, S.G. Ma, H. Zhou, MoNbTaV medium-entropy alloy, Entropy 18(5) (2016) 189. http://doi.org/10.3390/e18050189.
[27] Z. Li, Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior, Acta Materialia 164 (2019) 400-412. http://doi.org/10.1016/j.actamat.2018.10.050.
[28] Z. Li, D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties, JOM 69(11) (2017) 2099-2106. http://doi.org/10.1007/s11837-017-2540-2.
[29] M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Insights into the phase diagram of the CrMnFeCoNi high entropy alloy, Acta Materialia 88 (2015) 355-365. http://doi.org/10.1016/j.actamat.2015.01.068.
[30] G. Bracq, M. Laurent-Brocq, C. Varvenne, L. Perrière, W.A. Curtin, J.M. Joubert, I. Guillot, Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys, Acta Materialia 177 (2019) 266-279. http://doi.org/10.1016/j.actamat.2019.06.050.
[31] M. Laurent-Brocq, L. Perrière, R. Pirès, F. Prima, P. Vermaut, Y. Champion, From diluted solid solutions to high entropy alloys: On the evolution of properties with composition of multi-components alloys, Materials Science and Engineering: A 696 (2017) 228-235. http://doi.org/10.1016/j.msea.2017.04.079.
[32] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Materialia 112 (2016) 40-52. http://doi.org/10.1016/j.actamat.2016.04.005.
[33] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia 61(15) (2013) 5743-5755. http://doi.org/10.1016/j.actamat.2013.06.018.
[34] S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Materials & Design 133 (2017) 122-127. http://doi.org/10.1016/j.matdes.2017.07.054.
[35] Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Progress in Materials Science 102 (2019) 296-345. http://doi.org/10.1016/j.pmatsci.2018.12.003.
[36] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158. http://doi.org/10.1126/science.1254581.
[37] E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia 188 (2020) 435-474. http://doi.org/10.1016/j.actamat.2019.12.015.
[38] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM 65(12) (2013) 1780-1789. http://doi.org/10.1007/s11837-013-0771-4.
[39] S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Materialia 108 (2015) 44-47. http://doi.org/10.1016/j.scriptamat.2015.05.041.
[40] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nature Communications 7 (2016) 10602. http://doi.org/10.1038/ncomms10602.
[41] C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Materialia 118 (2016) 164-176. http://doi.org/10.1016/j.actamat.2016.07.040.
[42] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Progress in Materials Science 123 (2020) 100709. http://doi.org/10.1016/j.pmatsci.2020.100709.
[43] H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, J. Matejicek, Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy, Materials Science and Engineering: A 689 (2017) 252-256. http://doi.org/10.1016/j.msea.2017.02.068.
[44] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science and Engineering: A 633 (2015) 184-193. http://doi.org/10.1016/j.msea.2015.02.072.
[45] H.P. Chou, Y.S. Chang, SK. Chen, J.W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering: B 163(3) (2009) 184-189. http://doi.org/10.1016/j.mseb.2009.05.024.
[46] J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Secondary phases in Al x CoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal, Acta Materialia 131 (2017) 206-220. http://doi.org/10.1016/j.actamat.2017.03.066.
[47] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds 488(1) (2009) 57-64. http://doi.org/10.1016/j.jallcom.2009.08.090.
[48] J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, D.M. Fabijanic, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured Al x CoCrFeNi high entropy alloys, Materials Science and Engineering: A 733 (2018) 59-70. http://doi.org/10.1016/j.msea.2018.07.036.
[49] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[50] C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Progress and perspectives in laser additive manufacturing of key aeroengine materials, International Journal of Machine Tools and Manufacture 170 (2021) 103804. http://doi.org/10.1016/j.ijmachtools.2021.103804.
[51] D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, M. Easton, Metal alloys for fusion-based additive manufacturing, Advanced Engineering Materials 20(5) (2018) 1700952. http://doi.org/10.1002/adem.201700952.
[52] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021) 159567. http://doi.org/10.1016/j.jallcom.2021.159567.
[53] C. Wei, L. Li, Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion, Virtual and Physical Prototyping 16(3) (2021) 347-371. http://doi.org/10.1080/17452759.2021.1928520.
[54] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021) 100795. http://doi.org/10.1016/j.pmatsci.2021.100795.
[55] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews 2(4) (2015) 041101. http://doi.org/10.1063/1.4935926.
[56] J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M.J. Matthews, Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing, Advanced Engineering Materials 21(7) (2019) 1900185. http://doi.org/10.1002/adem.201900185.
[57] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia 108 (2016) 36-45. http://doi.org/10.1016/j.actamat.2016.02.014.
[58] R. Fabbro, M. Dal, P. Peyre, F. Coste, M. Schneider, V. Gunenthiram, Analysis and possible estimation of keyhole depths evolution, using laser operating parameters and material properties, Journal of Laser Applications 30(3) (2018) 032410. http://doi.org/10.2351/1.5040624.
[59] J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing, Applied Materials Today 9 (2017) 341-349. http://doi.org/10.1016/j.apmt.2017.08.006.
[60] P.A. Hooper, Melt pool temperature and cooling rates in laser powder bed fusion, Additive Manufacturing 22 (2018) 548-559. http://doi.org/10.1016/j.addma.2018.05.032.
[61] I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, International Journal of Machine Tools and Manufacture 49(12-13) (2009) 916-923. http://doi.org/10.1016/j.ijmachtools.2009.07.004.
[62] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Materials & Design 63 (2014) 856-867. http://doi.org/10.1016/j.matdes.2014.07.006.
[63] M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, The role of side-branching in microstructure development in laser powder-bed fusion, Nature Communications 11(1) (2020) 749. http://doi.org/10.1038/s41467-020-14453-3.
[64] T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, Dimensionless numbers in additive manufacturing, Journal of Applied Physics 121(6) (2017) 064904. http://doi.org/10.1063/1.4976006.
[65] N.A. Kistler, A.R. Nassar, E.W. Reutzel, D.J. Corbin, A.M. Beese, Effect of directed energy deposition processing parameters on laser deposited Inconel®718: Microstructure, fusion zone morphology, and hardness, Journal of Laser Applications 29(2) (2017) 022005. http://doi.org/10.2351/1.4979702.
[66] J.W. Elmer, S.M. Allen, T.W. Eagar, Microstructural development during solidification of stainless steel alloys, Metallurgical Transactions A 20(10) (1989) 2117-2131. http://doi.org/10.1007/BF02650298.
[67] S. Kou, Welding Metallurgy 2nd edn, John Wiley & Sons, New Jersey, 2003.
[68] R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting, Journal of Materials Science & Technology 32(8) (2016) 738-744. http://doi.org/10.1016/j.jmst.2016.06.016.
[69] C. Tan, J. Zou, D. Wang, W. Ma, K. Zhou, Duplex strengthening via SiC addition and in-situ precipitation in additively manufactured composite materials, Composites Part B: Engineering 236 (2022) 109820. http://doi.org/10.1016/j.compositesb.2022.109820.
[70] Q. Jia, P. Rometsch, S. Cao, K. Zhang, X. Wu, Towards a high strength aluminium alloy development methodology for selective laser melting, Materials & Design 174 (2019) 107775. http://doi.org/10.1016/j.matdes.2019.107775.
[71] A.K. Mishra, A. Kumar, Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V, Optics & Laser Technology 111 (2019) 227-239. http://doi.org/10.1016/j.optlastec.2018.09.054.
[72] Y. Liu, J. Zhang, Z. Pang, Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel, Optics & Laser Technology 98 (2018) 23-32. http://doi.org/10.1016/j.optlastec.2017.07.034.
[73] S. Holland, X. Wang, J. Chen, W. Cai, F. Yan, L. Li, Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting, Journal of Alloys and Compounds 784 (2019) 182-194. http://doi.org/10.1016/j.jallcom.2018.12.380.
[74] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault, G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Materialia 177 (2019) 209-221. http://doi.org/10.1016/j.actamat.2019.07.041.
[75] B. Attard, S. Cruchley, C. Beetz, M. Megahed, Y.L. Chiu, M.M. Attallah, Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components, Additive Manufacturing 36 (2020) 101432. http://doi.org/10.1016/j.addma.2020.101432.
[76] C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T. Sun, Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Scientific Reports 7 (2017) 3602. http://doi.org/10.1038/s41598-017-03761-2.
[77] V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, I. Koutiri, R. Fabbro, Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process, Journal of Materials Processing Technology 251 (2018) 376-386. http://doi.org/10.1016/j.jmatprotec.2017.08.012.
[78] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, L. Chen, In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process, Additive Manufacturing 28 (2019) 600-609. http://doi.org/10.1016/j.addma.2019.04.021.
[79] T.-N. Le, Y.-L. Lo, Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process, Materials & Design 179 (2019) 107866. http://doi.org/10.1016/j.matdes.2019.107866.
[80] N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, W. Tan, Effect of laser-matter interaction on molten pool flow and keyhole dynamics, Physical Review Applied 11(6) (2019) 064054. http://doi.org/10.1103/PhysRevApplied.11.064054.
[81] P. Yuan, D. Gu, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, Journal of Physics D: Applied Physics 48(3) (2015) 035303. http://doi.org/10.1088/0022-3727/48/3/035303.
[82] Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, W.K. Liu, Universal scaling laws of keyhole stability and porosity in 3D printing of metals, Nature Communications 12(1) (2021) 2379. http://doi.org/10.1038/s41467-021-22704-0.
[83] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, B. Stucker, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel, 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013, 2013, pp. 474-489.
[84] J.P. Oliveira, T.G. Santos, R.M. Miranda, Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice, Progress in Materials Science 107 (2020) 100590. http://doi.org/10.1016/j.pmatsci.2019.100590.
[85] Y. Ren, L. Liang, Q. Shan, A. Cai, J. Du, Q. Huang, S. Liu, X. Yang, Y. Tian, H. Wu, Effect of volumetric energy density on microstructure and tribological properties of FeCoNiCuAl high-entropy alloy produced by laser powder bed fusion, Virtual and Physical Prototyping 15(sup1) (2020) 543-554. http://doi.org/10.1080/17452759.2020.1848284.
[86] J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting, Acta Materialia 115 (2016) 285-294. http://doi.org/10.1016/j.actamat.2016.06.009.
[87] E. Uhlmann, A. Bergmann, W. Gridin, Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting, Procedia CIRP 35 (2015) 8-15. http://doi.org/10.1016/j.procir.2015.08.060.
[88] L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Assessing printability maps in additive manufacturing of metal alloys, Acta Materialia 176 (2019) 199-210. http://doi.org/10.1016/j.actamat.2019.07.005.
[89] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing 14 (2017) 39-48. http://doi.org/10.1016/j.addma.2016.12.001.
[90] Y. He, M. Zhong, J. Beuth, B. Webler, A study of microstructure and cracking behavior of H13 tool steel produced by laser powder bed fusion using single-tracks, multi-track pads, and 3D cubes, Journal of Materials Processing Technology 286 (2020) 116802. http://doi.org/10.1016/j.jmatprotec.2020.116802.
[91] S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, J.E. Guyer, Single-track melt-pool measurements and microstructures in Inconel 625, JOM 70(6) (2018) 1011-1016. http://doi.org/10.1007/s11837-018-2771-x.
[92] C. Bruna-Rosso, A.G. Demir, B. Previtali, Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction, Materials & Design 156 (2018) 143-153. http://doi.org/10.1016/j.matdes.2018.06.037.
[93] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting, Materials & Design 157 (2018) 24-34. http://doi.org/10.1016/j.matdes.2018.07.029.
[94] T.W. Eagar, N.S. Tsai, Temperature-fields produced by traveling distributed heat-sources, Welding Journal 62(12) (1983) 346-355.
[95] D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding Journal 20(5) (1941) 220-234.
[96] J.H.K. Tan, S.L. Sing, W.Y. Yeong, Microstructure modelling for metallic additive manufacturing: a review, Virtual and Physical Prototyping 15(1) (2019) 87-105. http://doi.org/10.1080/17452759.2019.1677345.
[97] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion, Engineering 3(5) (2017) 685-694. http://doi.org/10.1016/j.Eng.2017.05.023.
[98] A.M. Rubenchik, W.E. King, S.S. Wu, Scaling laws for the additive manufacturing, Journal of Materials Processing Technology 257 (2018) 234-243. http://doi.org/10.1016/j.jmatprotec.2018.02.034.
[99] S. Patel, M. Vlasea, Melting modes in laser powder bed fusion, Materialia 9 (2020) 100591. http://doi.org/10.1016/j.mtla.2020.100591.
[100] D.B. Hann, J. Iammi, J. Folkes, Keyholing or conduction – Prediction of laser penetration depth, in: S. Hinduja, L. Li (Eds.) Proceedings of the 36th International MATADOR Conference, Springer London, London, 2010, pp. 275-278.
[101] H. Ghasemi-Tabasi, J. Jhabvala, E. Boillat, T. Ivas, R. Drissi-Daoudi, R.E. Logé, An effective rule for translating optimal selective laser melting processing parameters from one material to another, Additive Manufacturing 36 (2020) 101496. http://doi.org/10.1016/j.addma.2020.101496.
[102] J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy, Materials & Design 110 (2016) 558-570. http://doi.org/10.1016/j.matdes.2016.08.036.
[103] W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology 214(12) (2014) 2915-2925. http://doi.org/10.1016/j.jmatprotec.2014.06.005.
[104] C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, H.C. Basoalto, Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution, Computational Materials Science 126 (2017) 479-490. http://doi.org/10.1016/j.commatsci.2016.10.011.
[105] C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia 96 (2015) 72-79. http://doi.org/10.1016/j.actamat.2015.06.004.
[106] J.H. Robinson, I.R.T. Ashton, E. Jones, P. Fox, C. Sutcliffe, The effect of hatch angle rotation on parts manufactured using selective laser melting, Rapid Prototyping Journal 25(2) (2019) 289-298. http://doi.org/10.1108/rpj-06-2017-0111.
[107] J.L. Bartlett, X. Li, An overview of residual stresses in metal powder bed fusion, Additive Manufacturing 27 (2019) 131-149. http://doi.org/10.1016/j.addma.2019.02.020.
[108] J. Robinson, I. Ashton, P. Fox, E. Jones, C. Sutcliffe, Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing, Additive Manufacturing 23 (2018) 13-24. http://doi.org/10.1016/j.addma.2018.07.001.
[109] S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing, Additive Manufacturing 22 (2018) 405-415. http://doi.org/10.1016/j.addma.2018.05.047.
[110] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scripta Materialia 154 (2018) 20-24. http://doi.org/10.1016/j.scriptamat.2018.05.015.
[111] A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Materials Letters 224 (2018) 22-25. http://doi.org/10.1016/j.matlet.2018.04.052.
[112] Y.K. Kim, J. Choe, K.A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism, Journal of Alloys and Compounds 805 (2019) 680-691. http://doi.org/10.1016/j.jallcom.2019.07.106.
[113] J. Ren, C. Mahajan, L. Liu, D. Follette, W. Chen, S. Mukherjee, Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy, Metals 9(10) (2019) 1029. http://doi.org/10.3390/met9101029.
[114] Z. Xu, H. Zhang, W. Li, A. Mao, L. Wang, G. Song, Y. He, Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting, Additive Manufacturing 28 (2019) 766-771. http://doi.org/10.1016/j.addma.2019.06.012.
[115] B. Wang, M. Sun, B. Li, L. Zhang, B. Lu, Anisotropic response of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting, Materials (Basel) 13(24) (2020) 5687. http://doi.org/10.3390/ma13245687.
[116] C. Zhang, K. Feng, H. Kokawa, B. Han, Z. Li, Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies, Materials Science and Engineering: A 789 (2020) 139672. http://doi.org/10.1016/j.msea.2020.139672.
[117] J. Guo, M. Goh, Z. Zhu, X. Lee, M.L.S. Nai, J. Wei, On the machining of selective laser melting CoCrFeMnNi high-entropy alloy, Materials & Design 153 (2018) 211-220. http://doi.org/10.1016/j.matdes.2018.05.012.
[118] X. Zhao, X. Lin, J. Chen, L. Xue, W. Huang, The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming, Materials Science and Engineering: A 504(1-2) (2009) 129-134. http://doi.org/10.1016/j.msea.2008.12.024.
[119] C. Guo, Z. Xu, Y. Zhou, S. Shi, G. Li, H. Lu, Q. Zhu, R.M. Ward, Single-track investigation of IN738LC superalloy fabricated by laser powder bed fusion: Track morphology, bead characteristics and part quality, Journal of Materials Processing Technology 290 (2021) 117000. http://doi.org/10.1016/j.jmatprotec.2020.117000.
[120] P. Niu, R. Li, S. Zhu, M. Wang, C. Chen, T. Yuan, Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting, Optics & Laser Technology 127 (2020). http://doi.org/10.1016/j.optlastec.2020.106147.
[121] X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting, Journal of Alloys and Compounds 631 (2015) 153-164. https://doi.org/10.1016/j.jallcom.2015.01.096.
[122] C. Chattopadhyay, S. Sangal, K. Mondal, A relook at the preferred growth direction of the solid–liquid interface during solidification of pure metals, Acta Materialia 58(16) (2010) 5342-5353. http://doi.org/10.1016/j.actamat.2010.06.009.
[123] B. Zhang, G. Bi, S. Nai, C.-n. Sun, J. Wei, Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting, Optics & Laser Technology 80 (2016) 186-195. http://doi.org/10.1016/j.optlastec.2016.01.010.
[124] L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Dislocation network in additive manufactured steel breaks strength–ductility trade-off, Materials Today 21(4) (2017) 354-361. http://doi.org/10.1016/j.mattod.2017.11.004.
[125] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia 62 (2014) 105-113. http://doi.org/10.1016/j.actamat.2013.09.037.
[126] Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, J. Gu, Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property, Journal of Alloys and Compounds 785 (2019) 1144-1159. http://doi.org/10.1016/j.jallcom.2019.01.213.
[127] Y.K. Kim, M.S. Baek, S. Yang, K.A. Lee, In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy, Additive Manufacturing 38 (2021) 101832. http://doi.org/10.1016/j.addma.2020.101832.
[128] K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba, Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting, Additive Manufacturing 23 (2018) 264-271. http://doi.org/10.1016/j.addma.2018.06.006.
[129] D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy – A comparison between selective laser melting and induction melting, Journal of Alloys and Compounds 784 (2019) 195-203. http://doi.org/10.1016/j.jallcom.2018.12.267.
[130] P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting, Intermetallics 104 (2019) 24-32. http://doi.org/10.1016/j.intermet.2018.10.018.
[131] F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet, S. Gorsse, Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties, JOM 71 (2019) 3443-3451. http://doi.org/10.1007/s11837-019-03715-1.
[132] P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders, Materials Science and Engineering: A 739 (2019) 86-89. http://doi.org/10.1016/j.msea.2018.10.035.
[133] Z.H. Zhang, Y.H. Zhou, S.Y. Zhou, L. Zhang, M. Yan, Mechanically blended Al: Simple but effective approach to improving mechanical property and thermal stability of selective laser-melted Inconel 718, Metallurgical and Materials Transactions A 50a(8) (2019) 3922-3936. http://doi.org/10.1007/s11661-019-05299-6.
[134] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, Journal of Alloys and Compounds 763 (2018) 436-445. http://doi.org/10.1016/j.jallcom.2018.05.325.
[135] B. Zhang, J. Chen, C. Coddet, Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti–Ni mixed powder, Journal of Materials Science & Technology 29(9) (2013) 863-867. http://doi.org/10.1016/j.jmst.2013.05.006.
[136] B. Zhang, N.-E. Fenineche, H. Liao, C. Coddet, Microstructure and magnetic properties of Fe–Ni alloy fabricated by selective laser melting Fe/Ni mixed powders, Journal of Materials Science & Technology 29(8) (2013) 757-760. http://doi.org/10.1016/j.jmst.2013.05.001.
[137] A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting, Journal of Alloys and Compounds 704 (2017) 434-442. http://doi.org/10.1016/j.jallcom.2017.02.086.
[138] V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend, Heliyon 5(2) (2019) e01188. http://doi.org/10.1016/j.heliyon.2019.e01188.
[139] C. Haase, F. Tang, M.B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Materials Science and Engineering: A 688 (2017) 180-189. http://doi.org/10.1016/j.msea.2017.01.099.
[140] Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe, Combinatorial metallurgical synthesis and processing of high-entropy alloys, Journal of Materials Research 33 (2018) 3156-3169. http://doi.org/10.1557/jmr.2018.214.
[141] S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion, Materials (Basel) 12(10) (2019) 1706. http://doi.org/10.3390/ma12101706.
[142] Y. Hou, H. Su, H. Zhang, X. Wang, C. Wang, Fabricating homogeneous FeCoCrNi high-entropy alloys via slm in situ alloying, Metals 11(6) (2021) 942. http://doi.org/10.3390/met11060942.
[143] F. Huber, D. Bartels, M. Schmidt, In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M), Materials (Basel) 14(11) (2021) 3095. http://doi.org/10.3390/ma14113095.
[144] K. Sun, W. Peng, L. Yang, L. Fang, Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy alloys, Metals 10(2) (2020) 292. http://doi.org/10.3390/met10020292.
[145] S. Luo, C. Zhao, H. Yang, Q. Liu, Z. Wang, X. Zeng, Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms, Additive Manufacturing 31 (2019) 100925. http://doi.org/10.1016/j.addma.2019.100925.
[146] D. Lin, L. Xu, X. Li, H. Jing, G. Qin, H. Pang, F. Minami, A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting, Additive Manufacturing 35 (2020) 101340. http://doi.org/10.1016/j.addma.2020.101340.
[147] Y. Kuzminova, A. Shibalova, S. Evlashin, I. Shishkovsky, P. Krakhmalev, Structural effect of low Al content in the in-situ additive manufactured CrFeCoNiAlx high-entropy alloy, Materials Letters 303 (2021) 130487. http://doi.org/10.1016/j.matlet.2021.130487.
[148] J. Gao, Y. Jin, Y. Fan, D. Xu, L. Meng, C. Wang, Y. Yu, D. Zhang, F. Wang, Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying, Journal of Materials Science & Technology 102 (2022) 159-165. http://doi.org/10.1016/j.jmst.2021.07.002.
[149] Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy, Acta Materialia 204 (2021) 116505. http://doi.org/10.1016/j.actamat.2020.116505.
[150] H. Zhang, W. Xu, Y. Xu, Z. Lu, D. Li, The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation, The International Journal of Advanced Manufacturing Technology 96 (2018) 461-474. http://doi.org/10.1007/s00170-017-1331-9.
[151] C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, E.A. Marquis, The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing, Acta Materialia 61(6) (2013) 2219-2235. http://doi.org/10.1016/j.actamat.2012.12.042.
[152] T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, G.J. Tatlock, Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting, Acta Materialia 87 (2015) 201-215. http://doi.org/10.1016/j.actamat.2014.12.047.
[153] Y. Miao, K. Mo, Z. Zhou, X. Liu, K.-C. Lan, G. Zhang, M.K. Miller, K.A. Powers, Z.-G. Mei, J.-S. Park, J. Almer, J.F. Stubbins, On the microstructure and strengthening mechanism in oxide dispersion-strengthened 316 steel: A coordinated electron microscopy, atom probe tomography and in situ synchrotron tensile investigation, Materials Science and Engineering: A 639 (2015) 585-596. http://doi.org/10.1016/j.msea.2015.05.064.
[154] R.M. Hunt, K.J. Kramer, B. El-Dasher, Selective laser sintering of MA956 oxide dispersion strengthened steel, Journal of Nuclear Materials 464 (2015) 80-85. http://doi.org/10.1016/j.jnucmat.2015.04.011.
[155] Q. Wang, K. Zhang, D. Qiu, W. Niu, Additive manufacturing of high-strength commercially pure titanium through lanthanum oxide addition, Materials Characterization 176 (2021) 111074. http://doi.org/10.1016/j.matchar.2021.111074.
[156] C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M.B. Wilms, R. Streubel, I.M. Kusoglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J.H. Schleifenbaum, F. Walther, B. Gault, B. Gökce, Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders, Acta Materialia 206 (2021) 116566. http://doi.org/10.1016/j.actamat.2020.116566.
[157] Y. Zhong, L. Liu, J. Zou, X. Li, D. Cui, Z. Shen, Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting, Journal of Materials Science & Technology 42 (2020) 97-105. http://doi.org/10.1016/j.jmst.2019.11.004.
[158] M. Ghayoor, K. Lee, Y. He, C.H. Chang, B.K. Paul, S. Pasebani, Selective laser melting of austenitic oxide dispersion strengthened steel: Processing, microstructural evolution and strengthening mechanisms, Materials Science and Engineering: A 788 (2020) 139532. http://doi.org/10.1016/j.msea.2020.139532.
[159] H. Springer, C. Baron, A. Szczepaniak, E.A. Jägle, M.B. Wilms, A. Weisheit, D. Raabe, Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition, Materials & Design 111 (2016) 60-69. http://doi.org/10.1016/j.matdes.2016.08.084.
[160] X. Lou, P.L. Andresen, R.B. Rebak, Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior, Journal of Nuclear Materials 499 (2018) 182-190. http://doi.org/10.1016/j.jnucmat.2017.11.036.
[161] C. Qiu, A new approach to synthesise high strength nano-oxide dispersion strengthened alloys, Journal of Alloys and Compounds 790 (2019) 1023-1033. http://doi.org/10.1016/j.jallcom.2019.03.221.
[162] S. Mirzababaei, M. Ghayoor, R.P. Doyle, S. Pasebani, In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion, Materials Letters 284 (2021) 129046. http://doi.org/10.1016/j.matlet.2020.129046.
[163] K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Materials Science and Engineering: A 625 (2015) 221-229. http://doi.org/10.1016/j.msea.2014.12.018.
[164] Z. Zhang, D. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia 54(7) (2006) 1321-1326. http://doi.org/10.1016/j.scriptamat.2005.12.017.
[165] Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Materials Science and Engineering: A 483-484 (2008) 148-152. http://doi.org/10.1016/j.msea.2006.10.184.3.11 References
[1] ASTM B822-20, Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering, ASTM International, West Conshohocken, PA, 2020.
[2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[3] GE Additive, GE Additive – Concept Laser – Machines (https://www.ge.com/additive/additive-manufacturing/machines). 2021.
[4] SLM Solutions, SLM Solutions – Machines (https://www.slm-solutions.com/products-and-solutions/machines/slm-125/). 2021.
[5] Materialise, Materialise – Software (https://www.materialise.com/en/software/magics). 2021.
[6] ASTM B962-17, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International, West Conshohocken, PA, 2017.
[7] Crystal Impact, Crystal Impact – Match! (https://www.crystalimpact.com/match/Default.htm). 2021.
[8] ASTM E1019-18, Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques, ASTM International, West Conshohocken, PA, 2018.
[9] ImageJ - Analyse Particles, ImageJ – Documentation (https://imagej.nih.gov/ij/docs/guide/index.html). 2021.
[10] Y.-K. Kim, J. Choe, K.-A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism, Journal of Alloys and Compounds 805 (2019) 680-691. http://doi.org/10.1016/j.jallcom.2019.07.106.
[11] EDAX, EDAX – TEAM (http://www.edax.com/Products/Integrated/TEAM-Pegasus-Integrated-EDS-and-EBSD-Analysis-System.aspx). 2016.
[12] EDAX, EDAX – OIM Analysis (https://www.edax.com/products/ebsd/oim-analysis). 2021.
[13] Gatan, Gatan – Gatan Microscopy Suite Software (https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software). 2021.
[14] ASTM E92-17, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2017
[15] ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016
[16] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scripta Materialia 154 (2018) 20-24. http://doi.org/10.1016/j.scriptamat.2018.05.015.
[17] ASTM E9-19, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM International, West Conshohocken, PA, 20194.6 References
[1] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1-93. http://doi.org/10.1016/j.pmatsci.2013.10.001.
[2] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science and Engineering: A 633 (2015) 184-193. http://doi.org/10.1016/j.msea.2015.02.072.
[3] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta Materialia 99 (2015) 93-96. http://doi.org/10.1016/j.scriptamat.2014.11.037.
[4] T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Materials Letters 159 (2015) 12-15. http://doi.org/10.1016/j.matlet.2015.06.046.
[5] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scripta Materialia 154 (2018) 20-24. http://doi.org/10.1016/j.scriptamat.2018.05.015.
[6] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds 746 (2018) 125-134. http://doi.org/10.1016/j.jallcom.2018.02.298.
[7] Z.H. Zhang, Y.H. Zhou, S.Y. Zhou, L. Zhang, M. Yan, Mechanically blended Al: Simple but effective approach to improving mechanical property and thermal stability of selective laser-melted Inconel 718, Metallurgical and Materials Transactions A 50a(8) (2019) 3922-3936. http://doi.org/10.1007/s11661-019-05299-6.
[8] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, Journal of Alloys and Compounds 763 (2018) 436-445. http://doi.org/10.1016/j.jallcom.2018.05.325.
[9] A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting, Journal of Alloys and Compounds 704 (2017) 434-442. http://doi.org/10.1016/j.jallcom.2017.02.086.
[10] A. Simchi, Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features, Materials Science and Engineering: A 428(1-2) (2006) 148-158. http://doi.org/10.1016/j.msea.2006.04.117.
[11] Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting, Journal of Materials Science & Technology 35(2) (2019) 388-394. http://doi.org/10.1016/j.jmst.2018.10.013.
[12] L.-z. Wang, J.-j. Wu, D.-j. Zhang, Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma, International Journal of Refractory Metals and Hard Materials 67 (2017) 90-97. http://doi.org/10.1016/j.ijrmhm.2017.05.007.
[13] Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis, Additive Manufacturing 25 (2019) 204-217. http://doi.org/10.1016/j.addma.2018.10.046.
[14] A.M. Rubenchik, W.E. King, S.S. Wu, Scaling laws for the additive manufacturing, Journal of Materials Processing Technology 257 (2018) 234-243. http://doi.org/10.1016/j.jmatprotec.2018.02.034.
[15] B. AlMangour, D. Grzesiak, J. Cheng, Y. Ertas, Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods, Journal of Materials Processing Technology 257 (2018) 288-301. http://doi.org/10.1016/j.jmatprotec.2018.01.028.
[16] B. Zhang, N.-E. Fenineche, H. Liao, C. Coddet, Microstructure and Magnetic Properties of Fe–Ni Alloy Fabricated by Selective Laser Melting Fe/Ni Mixed Powders, Journal of Materials Science & Technology 29(8) (2013) 757-760. http://doi.org/10.1016/j.jmst.2013.05.001.
[17] A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Materials Letters 224 (2018) 22-25. http://doi.org/10.1016/j.matlet.2018.04.052.
[18] Y.K. Kim, J. Choe, K.A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism, Journal of Alloys and Compounds 805 (2019) 680-691. http://doi.org/10.1016/j.jallcom.2019.07.106.5.6 References
[1] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. http://doi.org/10.1016/j.actamat.2016.08.081.
[2] I. Basu, J.T.M. De Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Materialia 187 (2020) 148-156. http://doi.org/10.1016/j.scriptamat.2020.06.019.
[3] B. Cantor, Multicomponent high-entropy Cantor alloys, Progress in Materials Science 120 (2021) 100754. http://doi.org/10.1016/j.pmatsci.2020.100754.
[4] K. Li, W. Chen, Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects, Materials Today Energy 20 (2021) 100638. http://doi.org/10.1016/j.mtener.2021.100638.
[5] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux 31(6) (2006) 633-648. http://doi.org/10.3166/acsm.31.633-648.
[6] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today 19(6) (2016) 349-362. http://doi.org/10.1016/j.mattod.2015.11.026.
[7] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature Reviews Materials 4(8) (2019) 515-534. http://doi.org/10.1038/s41578-019-0121-4.
[8] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021) 100795. http://doi.org/10.1016/j.pmatsci.2021.100795.
[9] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021) 159567. http://doi.org/10.1016/j.jallcom.2021.159567.
[10] S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion, Materials (Basel) 12(10) (2019) 1706. http://doi.org/10.3390/ma12101706.
[11] D. Lin, L. Xu, X. Li, H. Jing, G. Qin, H. Pang, F. Minami, A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting, Additive Manufacturing 35 (2020) 101340. http://doi.org/10.1016/j.addma.2020.101340.
[12] K. Sun, W. Peng, L. Yang, L. Fang, Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy alloys, Metals 10(2) (2020) 292. http://doi.org/10.3390/met10020292.
[13] Y. Hou, H. Su, H. Zhang, X. Wang, C. Wang, Fabricating homogeneous FeCoCrNi High-entropy alloys via SLM in situ alloying, Metals 11(6) (2021) 942. http://doi.org/10.3390/met11060942.
[14] Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy, Acta Materialia 204 (2021) 116505. http://doi.org/10.1016/j.actamat.2020.116505.
[15] Y. Kuzminova, A. Shibalova, S. Evlashin, I. Shishkovsky, P. Krakhmalev, Structural effect of low Al content in the in-situ additive manufactured CrFeCoNiAlx high-entropy alloy, Materials Letters 303 (2021) 130487. http://doi.org/10.1016/j.matlet.2021.130487.
[16] J. Gao, Y. Jin, Y. Fan, D. Xu, L. Meng, C. Wang, Y. Yu, D. Zhang, F. Wang, Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying, Journal of Materials Science & Technology 102 (2022) 159-165. http://doi.org/10.1016/j.jmst.2021.07.002.
[17] P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying, Journal of Materials Science & Technology 43 (2020) 40-43. http://doi.org/10.1016/j.jmst.2020.01.002.
[18] F. Huber, D. Bartels, M. Schmidt, In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M), Materials (Basel) 14(11) (2021) 3095. http://doi.org/10.3390/ma14113095.
[19] S. Luo, C. Zhao, H. Yang, Q. Liu, Z. Wang, X. Zeng, Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms, Additive Manufacturing 31 (2019) 100925. http://doi.org/10.1016/j.addma.2019.100925.
[20] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds 488(1) (2009) 57-64. http://doi.org/10.1016/j.jallcom.2009.08.090.
[21] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science and Engineering: A 633 (2015) 184-193. http://doi.org/10.1016/j.msea.2015.02.072.
[22] H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Materials Science and Engineering: A 656 (2016) 39-46. http://doi.org/10.1016/j.msea.2016.01.019.
[23] D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy – A comparison between selective laser melting and induction melting, Journal of Alloys and Compounds 784 (2019) 195-203. http://doi.org/10.1016/j.jallcom.2018.12.267.
[24] P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting, Intermetallics 104 (2019) 24-32. http://doi.org/10.1016/j.intermet.2018.10.018.
[25] S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing, Additive Manufacturing 22 (2018) 405-415. http://doi.org/10.1016/j.addma.2018.05.047.
[26] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, B. Stucker, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel, 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013, 2013, pp. 474-489.
[27] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[28] R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting, Intermetallics 94 (2018) 165-171. http://doi.org/10.1016/j.intermet.2018.01.002.
[29] H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering: B 163(3) (2009) 184-189. http://doi.org/10.1016/j.mseb.2009.05.024.
[30] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta Materialia 99 (2015) 93-96. http://doi.org/10.1016/j.scriptamat.2014.11.037.
[31] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing 14 (2017) 39-48. http://doi.org/10.1016/j.addma.2016.12.001.6.7 References
[1] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1-93. http://doi.org/10.1016/j.pmatsci.2013.10.001.
[2] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux 31(6) (2006) 633-648. http://doi.org/10.3166/acsm.31.633-648.
[3] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. http://doi.org/10.1016/j.actamat.2016.08.081.
[4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. http://doi.org/10.1002/adem.200300567.
[5] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia 62 (2014) 105-113. http://doi.org/10.1016/j.actamat.2013.09.037.
[6] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227-230. http://doi.org/10.1038/nature17981.
[7] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia 102 (2016) 187-196. http://doi.org/10.1016/j.actamat.2015.08.076.
[8] S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Materialia 59(1) (2011) 182-190. https://doi.org/10.1016/j.actamat.2010.09.023.
[9] D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, M. Easton, Metal alloys for fusion-based additive manufacturing, Advanced Engineering Materials 20(5) (2018) 1799962. http://doi.org/10.1002/adem.201700952.
[10] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[11] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta Materialia 99 (2015) 93-96. http://doi.org/10.1016/j.scriptamat.2014.11.037.
[12] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds 746 (2018) 125-134. http://doi.org/10.1016/j.jallcom.2018.02.298.
[13] P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders, Materials Science and Engineering: A 739 (2019) 86-89. http://doi.org/10.1016/j.msea.2018.10.035.
[14] J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, H.S. Kim, Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting, Materials Research Letters 8(1) (2019) 1-7. http://doi.org/10.1080/21663831.2019.1638844.
[15] T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting, Additive Manufacturing 25 (2019) 412-420. http://doi.org/10.1016/j.addma.2018.10.023.
[16] S. Luo, C. Zhao, Y. Su, Q. Liu, Z. Wang, Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms, Additive Manufacturing 31 (2020) 100925. https://doi.org/10.1016/j.addma.2019.100925.
[17] R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting, Intermetallics 94 (2018) 165-171. http://doi.org/10.1016/j.intermet.2018.01.002.
[18] W.Q. Wu, R. Zhou, B.Q. Wei, S. Ni, Y. Liu, M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting, Materials Characterization 144 (2018) 605-610. http://doi.org/10.1016/j.matchar.2018.08.019.
[19] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science and Engineering: A 633 (2015) 184-193. http://doi.org/10.1016/j.msea.2015.02.072.
[20] Z.H. Zhang, Y.H. Zhou, S.Y. Zhou, L. Zhang, M. Yan, Mechanically blended Al: Simple but effective approach to improving mechanical property and thermal stability of selective laser-melted Inconel 718, Metallurgical and Materials Transactions A 50a(8) (2019) 3922-3936. http://doi.org/10.1007/s11661-019-05299-6.
[21] A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting, Journal of Alloys and Compounds 704 (2017) 434-442. http://doi.org/10.1016/j.jallcom.2017.02.086.
[22] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, Journal of Alloys and Compounds 763 (2018) 436-445. http://doi.org/10.1016/j.jallcom.2018.05.325.
[23] P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying, Journal of Materials Science & Technology 43 (2020) 40-43. http://doi.org/10.1016/j.jmst.2020.01.002.
[24] H. Prasad, S. Singh, B.B. Panigrahi, Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy, Journal of Alloys and Compounds 692 (2017) 720-726. http://doi.org/10.1016/j.jallcom.2016.09.080.
[25] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3, Scripta Materialia 162 (2019) 477-481. http://doi.org/10.1016/j.scriptamat.2018.12.021.
[26] H. Springer, C. Baron, A. Szczepaniak, E.A. Jägle, M.B. Wilms, A. Weisheit, D. Raabe, Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition, Materials & Design 111 (2016) 60-69. http://doi.org/10.1016/j.matdes.2016.08.084.
[27] C. Qiu, A new approach to synthesise high strength nano-oxide dispersion strengthened alloys, Journal of Alloys and Compounds 790 (2019) 1023-1033. http://doi.org/10.1016/j.jallcom.2019.03.221.
[28] Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Progress in Materials Science 102 (2019) 296-345. http://doi.org/10.1016/j.pmatsci.2018.12.003.
[29] S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping, Materials Science and Engineering: A 761 (2019) 138056. http://doi.org/10.1016/j.msea.2019.138056.
[30] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia 118 (2016) 152-163. http://doi.org/10.1016/j.actamat.2016.07.038.
[31] B. Gludovatz, E.P. George, R.O. Ritchie, Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy, JOM 67(10) (2015) 2262-2270. http://doi.org/10.1007/s11837-015-1589-z.
[32] Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scripta Materialia 154 (2018) 20-24. http://doi.org/10.1016/j.scriptamat.2018.05.015.
[33] Y.K. Kim, J. Choe, K.A. Lee, Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism, Journal of Alloys and Compounds 805 (2019) 680-691. http://doi.org/10.1016/j.jallcom.2019.07.106.
[34] A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Materials Letters 224 (2018) 22-25. http://doi.org/10.1016/j.matlet.2018.04.052.
[35] Y. Zhong, L. Liu, J. Zou, X. Li, D. Cui, Z. Shen, Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting, Journal of Materials Science & Technology 42 (2020) 97-105. http://doi.org/10.1016/j.jmst.2019.11.004.
[36] B. Li, B. Qian, Y. Xu, Z. Liu, F. Xuan, Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing, Materials Letters 252 (2019) 88-91. http://doi.org/10.1016/j.matlet.2019.05.108.
[37] F. Siska, L. Stratil, H. Hadraba, S. Fintova, I. Kubena, V. Hornik, R. Husak, D. Bartkova, T. Zalezak, Strengthening mechanisms of different oxide particles in 9Cr ODS steel at high temperatures, Materials Science and Engineering: A 732 (2018) 112-119. http://doi.org/10.1016/j.msea.2018.06.109.
[38] S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Materials & Design 133 (2017) 122-127. http://doi.org/10.1016/j.matdes.2017.07.054.
[39] Q. Lin, X. An, H. Liu, Q. Tang, P. Dai, X. Liao, In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy, Journal of Alloys and Compounds 709 (2017) 802-807. https://doi.org/10.1016/j.jallcom.2017.03.194.
[40] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: The fcc case, Progress in Materials Science 48(3) (2003) 171-273. https://doi.org/10.1016/S0079-6425(02)00003-8.
[41] H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, J. Matejicek, Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy, Materials Science and Engineering: A 689 (2017) 252-256. http://doi.org/10.1016/j.msea.2017.02.068.
[42] Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis, Additive Manufacturing 25 (2019) 204-217. http://doi.org/10.1016/j.addma.2018.10.046.
[43] C. Tan, K. Zhou, W. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Materials & Design 155 (2018) 77-85. http://doi.org/10.1016/j.matdes.2018.05.064.
[44] M.I. Zaki, M.A. Hasan, L. Pasupulety, K. Kumari, Thermochemistry of manganese oxides in reactive gas atmospheres: Probing redox compositions in the decomposition course MnO2 → MnO, Thermochimica Acta 303(2) (1997) 171-181. https://doi.org/10.1016/S0040-6031(97)00258-X.
[45] K.T. Jacob, A. Kumar, Y. Waseda, Gibbs energy of formation of MnO: Measurement and assessment, Journal of Phase Equilibria and Diffusion 29(3) (2008) 222-230. http://doi.org/10.1007/s11669-008-9280-5.
[46] S. Seetharaman, Treatise on Process Metallurgy 1st edn, Elsevier, Oxford, 2014.
[47] H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy, Advanced Engineering Materials 19(11) (2017) 1700182. http://doi.org/10.1002/adem.201700182.
[48] F. Ye, Z. Jiao, Y. Yang, Effect of medium temperature precipitation phase and Mn element diffusion mechanism on high temperature oxidation process of repair and remanufacture CoCrFeMnNi high-entropy alloy cladding, Materials Research Express 6(5) (2019) 056521. http://doi.org/10.1088/2053-1591/ab01be.7.8 References
[1] Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scripta Materialia 99 (2015) 93-96. http://doi.org/10.1016/j.scriptamat.2014.11.037.
[2] X. Li, Additive manufacturing of advanced multi-component alloys: Bulk metallic glasses and high entropy alloys, Advanced Engineering Materials 20(5) (2017) 1700874. http://doi.org/10.1002/adem.201700874.
[3] J. Kim, A. Wakai, A. Moridi, Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys, Journal of Materials Research 35(15) (2020) 1963-1983. http://doi.org/10.1557/jmr.2020.140.
[4] P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders, Materials Science and Engineering: A 739 (2019) 86-89. http://doi.org/10.1016/j.msea.2018.10.035.
[5] C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Recent advances on high-entropy alloys for 3D printing, Advanced Matererials 32(26) (2020) 1903855. http://doi.org/10.1002/adma.201903855.
[6] D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting, Additive Manufacturing 32 (2020) 101058. http://doi.org/10.1016/j.addma.2020.101058.
[7] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds 746 (2018) 125-134. http://doi.org/10.1016/j.jallcom.2018.02.298.
[8] A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Materials Letters 224 (2018) 22-25. http://doi.org/10.1016/j.matlet.2018.04.052.
[9] J. Ren, C. Mahajan, L. Liu, D. Follette, W. Chen, S. Mukherjee, Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy, Metals 9(10) (2019) 1029. http://doi.org/10.3390/met9101029.
[10] J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, H.S. Kim, Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting, Materials Research Letters 8(1) (2019) 1-7. http://doi.org/10.1080/21663831.2019.1638844.
[11] B. Li, B. Qian, Y. Xu, Z. Liu, F. Xuan, Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing, Materials Letters 252 (2019) 88-91. http://doi.org/10.1016/j.matlet.2019.05.108.
[12] D.E. Jodi, J. Park, N. Park, Strengthening of ultrafine-grained equiatomic CoCrFeMnNi high-entropy alloy by nitrogen addition, Materials Letters 258 (2020) 126772. http://doi.org/10.1016/j.matlet.2019.126772.
[13] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science 92 (2018) 112-224. http://doi.org/10.1016/j.pmatsci.2017.10.001.
[14] Y. Dong, Y. Li, T. Ebel, M. Yan, Cost-affordable, high-performance Ti–TiB composite for selective laser melting additive manufacturing, Journal of Materials Research 35 (2020) 1922-1935. http://doi.org/10.1557/jmr.2019.389.
[15] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021) 159567. http://doi.org/10.1016/j.jallcom.2021.159567.
[16] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021) 100795. http://doi.org/10.1016/j.pmatsci.2021.100795.
[17] M. Cagirici, P. Wang, F.L. Ng, M.L.S. Nai, J. Ding, J. Wei, Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying, Journal of Materials Science & Technology 94 (2021) 53-66. http://doi.org/10.1016/j.jmst.2021.03.038.
[18] Z.H. Zhang, Y.H. Zhou, S.Y. Zhou, L. Zhang, M. Yan, Mechanically blended Al: Simple but effective approach to improving mechanical property and thermal stability of selective laser-melted Inconel 718, Metallurgical and Materials Transactions A 50a(8) (2019) 3922-3936. http://doi.org/10.1007/s11661-019-05299-6..
[19] B. Zhang, N.-E. Fenineche, H. Liao, C. Coddet, Microstructure and magnetic properties of Fe–Ni alloy fabricated by selective laser melting Fe/Ni mixed powders, Journal of Materials Science & Technology 29(8) (2013) 757-760. http://doi.org/10.1016/j.jmst.2013.05.001.
[20] R. Duan, S. Li, B. Cai, Z. Tao, W. Zhu, F. Ren, M.M. Attallah, In situ alloying based laser powder bed fusion processing of β Ti–Mo alloy to fabricate functionally graded composites, Composites Part B: Engineering 222 (2021) 109059. http://doi.org/10.1016/j.compositesb.2021.109059.
[21] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, Journal of Alloys and Compounds 763 (2018) 436-445. http://doi.org/10.1016/j.jallcom.2018.05.325.
[22] V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend, Heliyon 5(2) (2019) e01188. http://doi.org/10.1016/j.heliyon.2019.e01188.
[23] S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion, Materials (Basel) 12(10) (2019) 1706. http://doi.org/10.3390/ma12101706.
[24] P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying, Journal of Materials Science & Technology 43 (2020) 40-43. http://doi.org/10.1016/j.jmst.2020.01.002.
[25] S. Luo, C. Zhao, H. Yang, Q. Liu, Z. Wang, X. Zeng, Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: formability, heterogeneous microstructures and deformation mechanisms, Additive Manufacturing 31 (2019) 100925. http://doi.org/10.1016/j.addma.2019.100925.
[26] D. Lin, L. Xu, X. Li, H. Jing, G. Qin, H. Pang, F. Minami, A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting, Additive Manufacturing 35 (2020) 101340. http://doi.org/10.1016/j.addma.2020.101340.
[27] K. Sun, W. Peng, L. Yang, L. Fang, Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy alloys, Metals 10(2) (2020) 292. http://doi.org/10.3390/met10020292.
[28] Y. Hou, H. Su, H. Zhang, X. Wang, C. Wang, Fabricating homogeneous FeCoCrNi High-entropy alloys via SLM in situ alloying, Metals 11(6) (2021) 942. http://doi.org/10.3390/met11060942.
[29] F. Huber, D. Bartels, M. Schmidt, In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M), Materials (Basel) 14(11) (2021) 3095. http://doi.org/10.3390/ma14113095.
[30] Y. Kuzminova, A. Shibalova, S. Evlashin, I. Shishkovsky, P. Krakhmalev, Structural effect of low Al content in the in-situ additive manufactured CrFeCoNiAlx high-entropy alloy, Materials Letters 303 (2021) 130487. http://doi.org/10.1016/j.matlet.2021.130487.
[31] J. Gao, Y. Jin, Y. Fan, D. Xu, L. Meng, C. Wang, Y. Yu, D. Zhang, F. Wang, Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying, Journal of Materials Science & Technology 102 (2022) 159-165. http://doi.org/10.1016/j.jmst.2021.07.002.
[32] C. Guo, Z. Xu, Y. Zhou, S. Shi, G. Li, H. Lu, Q. Zhu, R.M. Ward, Single-track investigation of IN738LC superalloy fabricated by laser powder bed fusion: Track morphology, bead characteristics and part quality, Journal of Materials Processing Technology 290 (2021) 117000. http://doi.org/10.1016/j.jmatprotec.2020.117000.
[33] L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Assessing printability maps in additive manufacturing of metal alloys, Acta Materialia 176 (2019) 199-210. http://doi.org/10.1016/j.actamat.2019.07.005.
[34] H. Li, Y. Huang, J. Sun, Y. Lu, The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy, Journal of Materials Science & Technology 77 (2021) 187-195. http://doi.org/10.1016/j.jmst.2020.10.052.
[35] N.M. Everitt, Nanoindentation shows uniform local mechanical properties across melt pools and layers produced by selective laser melting of AlSi 10Mg alloy, Advanced Materials Letters 7(1) (2016) 13-16. http://doi.org/10.5185/amlett.2016.6171.
[36] R. Fabbro, M. Dal, P. Peyre, F. Coste, M. Schneider, V. Gunenthiram, Analysis and possible estimation of keyhole depths evolution, using laser operating parameters and material properties, Journal of Laser Applications 30(3) (2018) 032410. http://doi.org/10.2351/1.5040624.
[37] A.M. Rubenchik, W.E. King, S.S. Wu, Scaling laws for the additive manufacturing, Journal of Materials Processing Technology 257 (2018) 234-243. http://doi.org/10.1016/j.jmatprotec.2018.02.034.
[38] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing 14 (2017) 39-48. http://doi.org/10.1016/j.addma.2016.12.001.
[39] D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding Journal 20(5) (1941) 220-234.
[40] T.W. Eagar, N.S. Tsai, Temperature-fields produced by traveling distributed heat-sources, Welding Journal 62(12) (1983) 346-355.
[41] D.B. Hann, J. Iammi, J. Folkes, Keyholing or Conduction – Prediction of Laser Penetration Depth, in: S. Hinduja, L. Li (Eds.) Proceedings of the 36th International MATADOR Conference, Springer London, London, 2010, pp. 275-278.
[42] R. Fabbro, Melt pool and keyhole behaviour analysis for deep penetration laser welding, Journal of Physics D: Applied Physics 43(44) (2010) 445501. http://doi.org/10.1088/0022-3727/43/44/445501.
[43] J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M.J. Matthews, Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing, Advanced Engineering Materials 21(7) (2019) 1900185. http://doi.org/10.1002/adem.201900185.
[44] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion, Engineering 3(5) (2017) 685-694. http://doi.org/10.1016/j.Eng.2017.05.023.
[45] L.R. Goossens, B. Van Hooreweder, A virtual sensing approach for monitoring melt-pool dimensions using high speed coaxial imaging during laser powder bed fusion of metals, Additive Manufacturing 40 (2021) 101923. http://doi.org/10.1016/j.addma.2021.101923.
[46] M. Döring, G. Boussinot, J.F. Hagen, M. Apel, S. Kohl, M. Schmidt, Scaling melt pool geometry over a wide range of laser scanning speeds during laser-based Powder Bed Fusion, Procedia CIRP 94 (2020) 58-63. https://doi.org/10.1016/j.procir.2020.09.012.
[47] H.P. Chou, Y.S. Chang, S.K. Chen, J.-W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering: B 163(3) (2009) 184-189. http://doi.org/10.1016/j.mseb.2009.05.024.
[48] J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing, Applied Materials Today 9 (2017) 341-349. http://doi.org/10.1016/j.apmt.2017.08.006.
[49] H. Yao, J.W. Qiao, M. Gao, J. Hawk, S.G. Ma, H. Zhou, MoNbTaV medium-entropy alloy, Entropy 18(5) (2016) 189. http://doi.org/10.3390/e18050189.
[50] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, L. Chen, In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process, Additive Manufacturing 28 (2019) 600-609. http://doi.org/10.1016/j.addma.2019.04.021.
[51] M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, Reference data for the density and viscosity of liquid aluminum and liquid iron, Journal of Physical and Chemical Reference Data 35(1) (2006) 285-300. http://doi.org/10.1063/1.2149380.
[52] I. Korobeinikov, R. Endo, S. Seetharaman, O. Volkova, Density of liquid manganese measured using the maximum bubble pressure method, Metallurgical and Materials Transactions B 52(2) (2021) 571-575. http://doi.org/10.1007/s11663-020-02044-y.
[53] C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, K. Zhou, Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength, Journal of Materials Science & Technology 72 (2021) 217-222. http://doi.org/10.1016/j.jmst.2020.07.044.
[54] P. Chen, C. Yang, S. Li, M.M. Attallah, M. Yan, In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion, Materials & Design 194 (2020) 108966. http://doi.org/10.1016/j.matdes.2020.108966.
[55] M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, The role of side-branching in microstructure development in laser powder-bed fusion, Nature Communications 11(1) (2020) 749. http://doi.org/10.1038/s41467-020-14453-3.
[56] N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, W. Tan, Effect of laser-matter interaction on molten pool flow and keyhole dynamics, Physical Review Applied 11(6) (2019) 064054. http://doi.org/10.1103/PhysRevApplied.11.064054.
[57] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia 108 (2016) 36-45. http://doi.org/10.1016/j.actamat.2016.02.014.
[58] Y. Feng, X. Gao, Y. Zhang, C. Peng, X. Gui, Y. Sun, X. Xiao, Simulation and experiment for dynamics of laser welding keyhole and molten pool at different penetration status, TheInternational Journal of Advanced Manufacturing Technology 112(7-8) (2021) 2301-2312. http://doi.org/10.1007/s00170-020-06489-y.
[59] N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, G. Bruno, Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Materials & Design 134 (2017) 139-150. http://doi.org/10.1016/j.matdes.2017.08.049.
[60] C. Zhang, K. Feng, H. Kokawa, B. Han, Z. Li, Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies, Materials Science and Engineering: A 789 (2020) 139672. http://doi.org/10.1016/j.msea.2020.139672.
[61] B. Attard, S. Cruchley, C. Beetz, M. Megahed, Y.L. Chiu, M.M. Attallah, Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components, Additive Manufacturing 36 (2020) 101432. http://doi.org/10.1016/j.addma.2020.101432.
[62] J. Zou, Y. Gaber, G. Voulazeris, S. Li, L. Vazquez, L.-F. Liu, M.Y. Yao, Y.J. Wang, M. Holynski, K. Bongs, M.M. Attallah, Controlling the grain orientation during laser powder bed fusion to tailor the magnetic characteristics in a Ni-Fe based soft magnet, Acta Materialia 158 (2018) 230-238. http://doi.org/10.1016/j.actamat.2018.07.064.
[63] C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Progress and perspectives in laser additive manufacturing of key aeroengine materials, International Journal of Machine Tools and Manufacture 170 (2021) 103804. http://doi.org/10.1016/j.ijmachtools.2021.103804.
[64] Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, W.K. Liu, Universal scaling laws of keyhole stability and porosity in 3D printing of metals, Nature Communications 12(1) (2021) 2379. http://doi.org/10.1038/s41467-021-22704-0.
[65] T. Chen, L. Tan, Z. Lu, H. Xu, The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni, Acta Materialia 138 (2017) 83-91. http://doi.org/10.1016/j.actamat.2017.07.028.
[66] Z. Xu, H. Zhang, W. Li, A. Mao, L. Wang, G. Song, Y. He, Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting, Additive Manufacturing 28 (2019) 766-771. http://doi.org/10.1016/j.addma.2019.06.012.8.4 References
[1] Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy, Acta Materialia 204 (2021) 116505. http://doi.org/10.1016/j.actamat.2020.116505.
[2] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021) 100795. http://doi.org/10.1016/j.pmatsci.2021.100795.
修改评论