中文版 | English
题名

水稻转录调控的大数据分析与DNA甲基化调控模式的探究

其他题名
BIG DATA ANALYSIS OF TRANSCRIPTIONAL REGULATION AND INVESTIGATION OF REGULATION PATTERN OF DNA METHYLATION IN RICE
姓名
姓名拼音
YU Yiming
学号
11849507
学位类型
博士
学位专业
071001 植物学
学科门类/专业学位类别
07 理学
导师
翟继先
导师单位
生物系
论文答辩日期
2022-05-16
论文提交日期
2022-07-11
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

水稻(Oryza sativa L.)是主要粮食作物之一,供应着世界近一半以上人口的粮食需求。研究水稻相关的生物学问题对于提高水稻的产量,保护国家的粮食安全至关重要。随着测序成本的降低与测序覆盖度的提高,高通量RNA测序(RNA-seq)已经成为研究基因表达最常用的技术。近十年间,植物RNA-seq文库的数目每年呈指数速度增长。为了更好地利用RNA-seq组学大数据,本论文构建了植物公共的RNA-seq在线数据库PPRD Plant Public RNA-seq Database, http://ipf.sustech.edu.cn/pub/plantrna/)。PPRD包含水稻(11 726)、玉米(19 664)、大豆(4 085)、小麦(5 816)和棉花(3 483)总共5个物种的 44 774RNA-seq文库。PPRD支持通过基因、文库、关键字以及不同组合的方式进行基因表达量的查询。数据库可以展示不同组织、发育时期、非生物胁迫以及生物胁迫下的基因表达模式;提供不同突变体和处理条件下的基因差异表达的结果。同时,PPRD具有支持基因共表达的查询;提供基因组浏览器可在线查看基因组局部比对情况;支持基因在所有文库中表达量矩阵的下载等功能。

mRNA前体的剪接是mRNA加工过程中重要的步骤之一。基于纳米孔三代测序技术,本论文完成了优良杂交稻汕优63和其两亲本珍汕97和明辉63苗期地上部分的全长转录组测序,包括细胞核RNA和细胞总RNA。发现珍汕97和明辉63基因组中存在广泛的转录后剪接的现象。通过比较亲本和杂种中相同等位基因的转录后剪接水平,发现一些基因的转录后剪接水平在杂种中发生了改变,这些差异可能是由于杂种中存在不同的反式作用因子调控产生的。而比较杂种中等位基因之间的转录后剪接水平,发现有些等位基因的剪接水平和亲本保持一致,而另外一些等位基因在杂种中的剪接水平不同于亲本,这些差异可能是由于杂种中顺式作用元件的差异调控产生的。这些结果表明,亲本和杂种之间内含子剪接的调控是一个复杂的过程,需要多种因子的参与共同调控。此外,利用PPRD数据库中大量的水稻RNA-seq文库,本论文发现不同的胁迫条件会特异影响不同内含子的转录后剪接过程,这种动态的调控过程可能有助于植物适应复杂多变的外界环境。

DNA甲基化是基因组表观遗传修饰的主要形式之一,它在调控基因的表达及维持基因组的稳定性等方面起着至关重要的作用。本论文通过高效的CRISPR-Cas9基因编辑技术构建了大量的水稻DNA甲基转移酶突变体材料,包括9个单基因突变体和8个多基因组合突变体。通过全基因组甲基化测序发现,OsDRM2OsCMT2OsCMT3a是水稻中调控CHGCHH甲基化的主效甲基转移酶。分析发现,Os-dcc突变体中存在大量的转座子和基因的差异表达。此外,Os-dcc突变体中存在很高比例的非CG甲基化的剩余,这些剩余甲基化位点具有高GC含量的特征。这些位点的甲基化在Os-ddccc突变体中几乎完全丢失,而在Os-ddcc突变体中仍然被维持,表明OsCMT3b在主效的DNA甲基转移酶功能缺失时,可以维持GC富集区域的非CG甲基化水平。进一步分析发现,这类GC富集区域的非CG甲基化是水稻中特异存在的,OsCMT3b的亚功能化有助于调控这些区域的甲基化。

综上所述,本论文构建了包含约45 000个公共文库的植物RNA-seq在线数据库PPRD,支持快速查询和下载水稻、玉米、大豆、小麦和棉花在所有公共RNA-seq数据中的基因表达量。基于纳米孔三代测序技术,本论文完成了优良杂交稻汕优63和其两亲本珍汕97和明辉63的全长转录组测序,系统比较了两亲本之间、亲本和杂种之间以及杂种中等位基因之间的共转录剪接速率和转录后剪接水平。此外,本论文还通过高效的CRISPR-Cas9基因编辑技术构建了大量的水稻DNA甲基转移酶突变体,研究了甲基转移酶的功能以及不同甲基转移酶之间的作用关系,揭示了水稻非CG甲基化的调控网络。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] LI Y, XIAO J, CHEN L, et al. Rice Functional Genomics Research: Past Decade and Future[J]. Mol Plant, 2018, 11(3): 359-380.
[2] WISSINK E M, VIHERVAARA A, TIPPENS N D, et al. Nascent RNA analyses: tracking transcription and its regulation[J]. Nat Rev Genet, 2019, 20(12): 705-723.
[3] OESTERREICH F C, HERZEL L, STRAUBE K, et al. Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II[J]. Cell, 2016, 165(2): 372-381.
[4] HERZEL L, STRAUBE K, NEUGEBAUER K M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events[J]. Genome Res, 2018, 28(7): 1008-1019.
[5] JIA J, LONG Y, ZHANG H, et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants[J]. Nat Plants, 2020, 6(7): 780-788.
[6] LAW J A, JACOBSEN S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Rev Genet, 2010, 11(3): 204-220.
[7] INTERNATIONAL RICE GENOME SEQUENCING INITIATIVE. The map-based sequence of the rice genome[J]. Nature, 2005, 436(7052): 793-800.
[8] HU L J, LI N, XU C M, et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 10642-10647.
[9] YAMAUCHI T, JOHZUKA-HISATOMI Y, TERADA R, et al. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice[J]. Plant Molecular Biology, 2014, 85(3): 219-232.
[10] CHENG C, TARUTANI Y, MIYAO A, et al. Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition[J]. Plant Journal, 2015, 83(6): 1069-1081.
[11] MORITOH S, EUN C H, ONO A, et al. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation[J]. Plant Journal, 2012, 71(1): 85-98.
[12] SCHENA M, SHALON D, DAVIS R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995, 270(5235): 467-470.
[13] JIAO Y, TAUSTA S L, GANDOTRA N, et al. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies[J]. Nat Genet, 2009, 41(2): 258-263.
[14] WANG L, XIE W, CHEN Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J]. Plant Journal, 2010, 61(5): 752-766.
[15] SATO Y, TAKEHISA H, KAMATSUKI K, et al. RiceXPro version 3.0: expanding the informatics resource for rice transcriptome[J]. Nucleic Acids Res, 2013, 41(Database issue): D1206-1213.
[16] WAESE J, FAN J, PASHA A, et al. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology[J]. Plant Cell, 2017, 29(8): 1806-1821.
[17] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63.
[18] XIA L, ZOU D, SANG J, et al. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice[J]. Journal of Genetics and Genomics, 2017, 44(5): 235-241.
[19] PORTWOOD J L, 2ND, WOODHOUSE M R, CANNON E K, et al. MaizeGDB 2018: the maize multi-genome genetics and genomics database[J]. Nucleic Acids Res, 2019, 47(D1): D1146-d1154.
[20] PROOST S, MUTWIL M. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses[J]. Nucleic Acids Res, 2018, 46(W1): W133-w140.
[21] PAPATHEODOROU I, MORENO P, MANNING J, et al. Expression Atlas update: from tissues to single cells[J]. Nucleic Acids Res, 2020, 48(D1): D77-d83.
[22] ZHANG H, ZHANG F, YU Y, et al. A Comprehensive Online Database for Exploring ∼20,000 Public Arabidopsis RNA-Seq Libraries[J]. Mol Plant, 2020, 13(9): 1231-1233.
[23] CHEN W, MOORE M J. Spliceosomes[J]. Curr Biol, 2015, 25(5): R181-183.
[24] KONCZ C, DEJONG F, VILLACORTA N, et al. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator[J]. Frontiers in plant science, 2012, 3: 9.
[25] HINTERBERGER M, PETTERSSON I, STEITZ J A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs[J]. J Biol Chem, 1983, 258(4): 2604-2613.
[26] FABRIZIO P, ESSER S, KASTNER B, et al. Isolation of S. cerevisiae snRNPs: comparison of U1 and U4/U6.U5 to their human counterparts[J]. Science, 1994, 264(5156): 261-265.
[27] WILKINSON M E, CHARENTON C, NAGAI K. RNA Splicing by the Spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388.
[28] LAMM G M, LAMOND A I. Non-snRNP protein splicing factors[J]. Biochim Biophys Acta, 1993, 1173(3): 247-265.
[29] LORKOVIC Z J, WIECZOREK KIRK D A, LAMBERMON M H, et al. Pre-mRNA splicing in higher plants[J]. Trends Plant Sci, 2000, 5(4): 160-167.
[30] REDDY A S N. Nuclear Pre-mRNA Splicing in Plants[J]. Critical Reviews in Plant Sciences, 2001, 20(6): 523-571.
[31] MOYER D C, LARUE G E, HERSHBERGER C E, et al. Comprehensive database and evolutionary dynamics of U12-type introns[J]. Nucleic Acids Res, 2020, 48(13): 7066-7078.
[32] REDDY A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era[J]. Annu Rev Plant Biol, 2007, 58: 267-294.
[33] BURGE C B, PADGETT R A, SHARP P A. Evolutionary fates and origins of U12-type introns[J]. Mol Cell, 1998, 2(6): 773-785.
[34] LEVINE A, DURBIN R. A computational scan for U12-dependent introns in the human genome sequence[J]. Nucleic Acids Res, 2001, 29(19): 4006-4013.
[35] WU Q, KRAINER A R. U1-mediated exon definition interactions between AT-AC and GT-AG introns[J]. Science, 1996, 274(5289): 1005-1008.
[36] DIETRICH R C, SHUKLA G C, FULLER J D, et al. Alternative splicing of U12-dependent introns in vivo responds to purine-rich enhancers[J]. Rna, 2001, 7(10): 1378-1388.
[37] LONG J C, CACERES J F. The SR protein family of splicing factors: master regulators of gene expression[J]. Biochem J, 2009, 417(1): 15-27.
[38] DUQUE P. A role for SR proteins in plant stress responses[J]. Plant Signal Behav, 2011, 6(1): 49-54.
[39] HAN S P, TANG Y H, SMITH R. Functional diversity of the hnRNPs: past, present and perspectives[J]. Biochem J, 2010, 430(3): 379-392.
[40] WACHTER A, RüHL C, STAUFFER E. The Role of Polypyrimidine Tract-Binding Proteins and Other hnRNP Proteins in Plant Splicing Regulation[J]. Frontiers in plant science, 2012, 3: 81.
[41] HOWARD J M, SANFORD J R. The RNAissance family: SR proteins as multifaceted regulators of gene expression[J]. Wiley Interdiscip Rev RNA, 2015, 6(1): 93-110.
[42] YEAP W C, NAMASIVAYAM P, HO C L. HnRNP-like proteins as post-transcriptional regulators[J]. Plant Sci, 2014, 227: 90-100.
[43] BERGET S M, MOORE C, SHARP P A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. 1977[J]. Rev Med Virol, 2000, 10(6): 356-362; discussion 355-356.
[44] CHOW L T, GELINAS R E, BROKER T R, et al. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA[J]. Cell, 1977, 12(1): 1-8.
[45] MOUNT S M, PETTERSSON I, HINTERBERGER M, et al. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro[J]. Cell, 1983, 33(2): 509-518.
[46] MICHAUD S, REED R. A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals[J]. Genes Dev, 1993, 7(6): 1008-1020.
[47] BERGLUND J A, CHUA K, ABOVICH N, et al. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC[J]. Cell, 1997, 89(5): 781-787.
[48] ZORIO D A, BLUMENTHAL T. Both subunits of U2AF recognize the 3' splice site in Caenorhabditis elegans[J]. Nature, 1999, 402(6763): 835-838.
[49] KELLER E B, NOON W A. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs[J]. Proc Natl Acad Sci U S A, 1984, 81(23): 7417-7420.
[50] PARKER R, SILICIANO P G, GUTHRIE C. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA[J]. Cell, 1987, 49(2): 229-239.
[51] BOESLER C, RIGO N, ANOKHINA M M, et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity[J]. Nat Commun, 2016, 7: 11997.
[52] STALEY J P, GUTHRIE C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p[J]. Mol Cell, 1999, 3(1): 55-64.
[53] CHEN J Y, STANDS L, STALEY J P, et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor[J]. Mol Cell, 2001, 7(1): 227-232.
[54] TARN W Y, LEE K R, CHENG S C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA[J]. Proc Natl Acad Sci U S A, 1993, 90(22): 10821-10825.
[55] YAN C, WAN R, BAI R, et al. Structure of a yeast activated spliceosome at 3.5 Å resolution[J]. Science, 2016, 353(6302): 904-911.
[56] WARKOCKI Z, ODENWäLDER P, SCHMITZOVá J, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components[J]. Nat Struct Mol Biol, 2009, 16(12): 1237-1243.
[57] WAN R, BAI R, YAN C, et al. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching[J]. Cell, 2019, 177(2): 339-351.e313.
[58] YAN C, WAN R, BAI R, et al. Structure of a yeast step II catalytically activated spliceosome[J]. Science, 2017, 355(6321): 149-155.
[59] FICA S M, OUBRIDGE C, GALEJ W P, et al. Structure of a spliceosome remodelled for exon ligation[J]. Nature, 2017, 542(7641): 377-380.
[60] BAI R, YAN C, WAN R, et al. Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae[J]. Cell, 2017, 171(7): 1589-1598.e1588.
[61] LIU S, LI X, ZHANG L, et al. Structure of the yeast spliceosomal postcatalytic P complex[J]. Science, 2017, 358(6368): 1278-1283.
[62] WILKINSON M E, FICA S M, GALEJ W P, et al. Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection[J]. Science, 2017, 358(6368): 1283-1288.
[63] WAN R, YAN C, BAI R, et al. Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae[J]. Cell, 2017, 171(1): 120-132.e112.
[64] MARTIN A, SCHNEIDER S, SCHWER B. Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome[J]. J Biol Chem, 2002, 277(20): 17743-17750.
[65] WAHL M C, WILL C L, LüHRMANN R. The spliceosome: design principles of a dynamic RNP machine[J]. Cell, 2009, 136(4): 701-718.
[66] WAN R, BAI R, ZHAN X, et al. How Is Precursor Messenger RNA Spliced by the Spliceosome?[J]. Annu Rev Biochem, 2020, 89: 333-358.
[67] MARQUEZ Y, BROWN J W, SIMPSON C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis[J]. Genome Res, 2012, 22(6): 1184-1195.
[68] REDDY A S, MARQUEZ Y, KALYNA M, et al. Complexity of the alternative splicing landscape in plants[J]. Plant Cell, 2013, 25(10): 3657-3683.
[69] MCGLINCY N J, SMITH C W. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense?[J]. Trends Biochem Sci, 2008, 33(8): 385-393.
[70] KALYNA M, SIMPSON C G, SYED N H, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis[J]. Nucleic Acids Res, 2012, 40(6): 2454-2469.
[71] SYED N H, KALYNA M, MARQUEZ Y, et al. Alternative splicing in plants--coming of age[J]. Trends Plant Sci, 2012, 17(10): 616-623.
[72] SEO P J, HONG S Y, KIM S G, et al. Competitive inhibition of transcription factors by small interfering peptides[J]. Trends Plant Sci, 2011, 16(10): 541-549.
[73] BREITBART R E, ANDREADIS A, NADAL-GINARD B. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes[J]. Annu Rev Biochem, 1987, 56: 467-495.
[74] BRETT D, POSPISIL H, VALCARCEL J, et al. Alternative splicing and genome complexity[J]. Nat Genet, 2002, 30(1): 29-30.
[75] WANG B B, BRENDEL V. Genomewide comparative analysis of alternative splicing in plants[J]. Proc Natl Acad Sci U S A, 2006, 103(18): 7175-7180.
[76] FILICHKIN S A, PRIEST H D, GIVAN S A, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana[J]. Genome Res, 2010, 20(1): 45-58.
[77] DONG C, HE F, BERKOWITZ O, et al. Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (Oryza sativa)[J]. Plant Cell, 2018, 30(10): 2267-2285.
[78] ARCIGA-REYES L, WOOTTON L, KIEFFER M, et al. UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis[J]. Plant Journal, 2006, 47(3): 480-489.
[79] HORI K, WATANABE Y. UPF3 suppresses aberrant spliced mRNA in Arabidopsis[J]. Plant Journal, 2005, 43(4): 530-540.
[80] MéRAI Z, BENKOVICS A H, NYIKó T, et al. The late steps of plant nonsense-mediated mRNA decay[J]. Plant Journal, 2013, 73(1): 50-62.
[81] CULBERTSON M R. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer[J]. Trends Genet, 1999, 15(2): 74-80.
[82] HAWKINS J D. A survey on intron and exon lengths[J]. Nucleic Acids Res, 1988, 16(21): 9893-9908.
[83] CARTER M S, LI S, WILKINSON M F. A splicing-dependent regulatory mechanism that detects translation signals[J]. Embo Journal, 1996, 15(21): 5965-5975.
[84] PETRACEK M E, NUYGEN T, THOMPSON W F, et al. Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated[J]. Plant Journal, 2000, 21(6): 563-569.
[85] LI S, YAMADA M, HAN X, et al. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation[J]. Dev Cell, 2016, 39(4): 508-522.
[86] LONG Y, LIU Z, JIA J, et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants[J]. Genome Biol, 2021, 22(1): 66.
[87] XING Y, LEE C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes[J]. Nat Rev Genet, 2006, 7(7): 499-509.
[88] SWARAZ A M, PARK Y D, HUR Y. Knock-out mutations of Arabidopsis SmD3-b induce pleotropic phenotypes through altered transcript splicing[J]. Plant Sci, 2011, 180(5): 661-671.
[89] PEREA-RESA C, HERNáNDEZ-VERDEJA T, LóPEZ-COBOLLO R, et al. LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development[J]. Plant Cell, 2012, 24(12): 4930-4947.
[90] ZHANG Z, ZHANG S, ZHANG Y, et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation[J]. Plant Cell, 2011, 23(1): 396-411.
[91] PEREZ-SANTáNGELO S, MANCINI E, FRANCEY L J, et al. Role for LSM genes in the regulation of circadian rhythms[J]. Proc Natl Acad Sci U S A, 2014, 111(42): 15166-15171.
[92] GOLISZ A, SIKORSKI P J, KRUSZKA K, et al. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation[J]. Nucleic Acids Res, 2013, 41(12): 6232-6249.
[93] CUI P, ZHANG S, DING F, et al. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis[J]. Genome Biol, 2014, 15(1): R1.
[94] AHMAD A, CAO X. Plant PRMTs broaden the scope of arginine methylation[J]. Journal of Genetics and Genomics, 2012, 39(5): 195-208.
[95] MEISTER G, EGGERT C, BüHLER D, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln[J]. Curr Biol, 2001, 11(24): 1990-1994.
[96] FRIESEN W J, PAUSHKIN S, WYCE A, et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins[J]. Mol Cell Biol, 2001, 21(24): 8289-8300.
[97] DENG X, GU L, LIU C, et al. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing[J]. Proc Natl Acad Sci U S A, 2010, 107(44): 19114-19119.
[98] PEI Y, NIU L, LU F, et al. Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis[J]. Plant Physiology, 2007, 144(4): 1913-1923.
[99] HERNANDO C E, SANCHEZ S E, MANCINI E, et al. Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome[J]. BMC Genomics, 2015, 16(1): 192.
[100] SANCHEZ S E, PETRILLO E, BECKWITH E J, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing[J]. Nature, 2010, 468(7320): 112-116.
[101] HONG S, SONG H R, LUTZ K, et al. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 2010, 107(49): 21211-21216.
[102] LEE B H, KAPOOR A, ZHU J, et al. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis[J]. Plant Cell, 2006, 18(7): 1736-1749.
[103] THALHAMMER A, BRYANT G, SULPICE R, et al. Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo[J]. Plant Physiology, 2014, 166(1): 190-201.
[104] DU J L, ZHANG S W, HUANG H W, et al. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis[J]. Mol Plant, 2015, 8(7): 1053-1068.
[105] PENA V, ROZOV A, FABRIZIO P, et al. Structure and function of an RNase H domain at the heart of the spliceosome[J]. Embo Journal, 2008, 27(21): 2929-2940.
[106] GRAINGER R J, BEGGS J D. Prp8 protein: at the heart of the spliceosome[J]. Rna, 2005, 11(5): 533-557.
[107] WANG C, TIAN Q, HOU Z, et al. The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time[J]. Plant Cell Rep, 2007, 26(8): 1357-1366.
[108] SONG H R, SONG J D, CHO J N, et al. The RNA binding protein ELF9 directly reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 transcript levels in arabidopsis, possibly via nonsense-mediated mRNA decay[J]. Plant Cell, 2009, 21(4): 1195-1211.
[109] WANG B B, BRENDEL V. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing[J]. Genome Biol, 2004, 5(12): R102.
[110] LOPATO S, MAYEDA A, KRAINER A R, et al. Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors[J]. Proc Natl Acad Sci U S A, 1996, 93(7): 3074-3079.
[111] BOURGEOIS C F, LEJEUNE F, STéVENIN J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA[J]. Prog Nucleic Acid Res Mol Biol, 2004, 78: 37-88.
[112] IZQUIERDO J M, MAJóS N, BONNAL S, et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition[J]. Mol Cell, 2005, 19(4): 475-484.
[113] STAUFFER E, WESTERMANN A, WAGNER G, et al. Polypyrimidine tract-binding protein homologues from Arabidopsis underlie regulatory circuits based on alternative splicing and downstream control[J]. Plant Journal, 2010, 64(2): 243-255.
[114] RüHL C, STAUFFER E, KAHLES A, et al. Polypyrimidine tract binding protein homologs from Arabidopsis are key regulators of alternative splicing with implications in fundamental developmental processes[J]. Plant Cell, 2012, 24(11): 4360-4375.
[115] SIMPSON C G, LEWANDOWSKA D, LINEY M, et al. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially[J]. New Phytol, 2014, 203(2): 424-436.
[116] ZHU D, MAO F, TIAN Y, et al. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis[J]. Mol Plant, 2020, 13(2): 278-294.
[117] WU Z, ZHU D, LIN X, et al. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis[J]. Plant Cell, 2016, 28(1): 55-73.
[118] DENG X, LU T, WANG L, et al. Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5[J]. Proc Natl Acad Sci U S A, 2016, 113(19): 5447-5452.
[119] CHANARAT S, STRäßER K. Splicing and beyond: the many faces of the Prp19 complex[J]. Biochim Biophys Acta, 2013, 1833(10): 2126-2134.
[120] MONAGHAN J, XU F, GAO M, et al. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity[J]. PLoS Pathog, 2009, 5(7): e1000526.
[121] MONAGHAN J, XU F, XU S, et al. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex[J]. Plant Physiology, 2010, 154(4): 1783-1793.
[122] RASCHE N, DYBKOV O, SCHMITZOVá J, et al. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre[J]. Embo Journal, 2012, 31(6): 1591-1604.
[123] WANG X, WU F, XIE Q, et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis[J]. Plant Cell, 2012, 24(8): 3278-3295.
[124] FENG J, LI J, GAO Z, et al. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis[J]. Mol Plant, 2015, 8(7): 1038-1052.
[125] TSAI R T, FU R H, YEH F L, et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2[J]. Genes Dev, 2005, 19(24): 2991-3003.
[126] PANDIT S, PAUL S, ZHANG L, et al. Spp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function[J]. Genetics, 2009, 183(1): 195-206.
[127] SAHI C, LEE T, INADA M, et al. Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain[J]. Mol Cell Biol, 2010, 30(1): 33-42.
[128] KOODATHINGAL P, NOVAK T, PICCIRILLI J A, et al. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing[J]. Mol Cell, 2010, 39(3): 385-395.
[129] MAYAS R M, MAITA H, SEMLOW D R, et al. Spliceosome discards intermediates via the DEAH box ATPase Prp43p[J]. Proc Natl Acad Sci U S A, 2010, 107(22): 10020-10025.
[130] CVITKOVIC I, JURICA M S. Spliceosome database: a tool for tracking components of the spliceosome[J]. Nucleic Acids Res, 2013, 41(Database issue): D132-141.
[131] JONES M A, WILLIAMS B A, MCNICOL J, et al. Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects[J]. Plant Cell, 2012, 24(10): 4066-4082.
[132] DOLATA J, GUO Y, KOŁOWERZO A, et al. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis[J]. Embo Journal, 2015, 34(4): 544-558.
[133] BENTLEY D L. Coupling mRNA processing with transcription in time and space[J]. Nat Rev Genet, 2014, 15(3): 163-175.
[134] HEIDEMANN M, HINTERMAIR C, VOß K, et al. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription[J]. Biochim Biophys Acta, 2013, 1829(1): 55-62.
[135] ALI I, RUIZ D G, NI Z, et al. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins[J]. Mol Cell, 2019, 74(6): 1164-1174.e1164.
[136] MCCRACKEN S, FONG N, YANKULOV K, et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription[J]. Nature, 1997, 385(6614): 357-361.
[137] NOJIMA T, REBELO K, GOMES T, et al. RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing[J]. Mol Cell, 2018, 72(2): 369-379.e364.
[138] DE LA MATA M, KORNBLIHTT A R. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20[J]. Nat Struct Mol Biol, 2006, 13(11): 973-980.
[139] JEONG S. SR Proteins: Binders, Regulators, and Connectors of RNA[J]. Mol Cells, 2017, 40(1): 1-9.
[140] HINTERMAIR C, HEIDEMANN M, KOCH F, et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation[J]. Embo Journal, 2012, 31(12): 2784-2797.
[141] SCHLACKOW M, NOJIMA T, GOMES T, et al. Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs[J]. Mol Cell, 2017, 65(1): 25-38.
[142] LUCO R F, PAN Q, TOMINAGA K, et al. Regulation of alternative splicing by histone modifications[J]. Science, 2010, 327(5968): 996-1000.
[143] SIMS R J, 3RD, MILLHOUSE S, CHEN C F, et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing[J]. Mol Cell, 2007, 28(4): 665-676.
[144] ANTOSZ W, PFAB A, EHRNSBERGER H F, et al. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors[J]. Plant Cell, 2017, 29(4): 854-870.
[145] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis[J]. Nat Plants, 2018, 4(12): 1112-1123.
[146] MO W, LIU B, ZHANG H, et al. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing[J]. Genome Biol, 2021, 22(1): 322.
[147] DUJARDIN G, LAFAILLE C, DE LA MATA M, et al. How slow RNA polymerase II elongation favors alternative exon skipping[J]. Mol Cell, 2014, 54(4): 683-690.
[148] BRAUNSCHWEIG U, GUEROUSSOV S, PLOCIK A M, et al. Dynamic integration of splicing within gene regulatory pathways[J]. Cell, 2013, 152(6): 1252-1269.
[149] NAFTELBERG S, SCHOR I E, AST G, et al. Regulation of alternative splicing through coupling with transcription and chromatin structure[J]. Annu Rev Biochem, 2015, 84: 165-198.
[150] ASLANZADEH V, HUANG Y, SANGUINETTI G, et al. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast[J]. Genome Res, 2018, 28(2): 203-213.
[151] PETRILLO E, GODOY HERZ M A, FUCHS A, et al. A chloroplast retrograde signal regulates nuclear alternative splicing[J]. Science, 2014, 344(6182): 427-430.
[152] GODOY HERZ M A, KUBACZKA M G, BRZYŻEK G, et al. Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation[J]. Mol Cell, 2019, 73(5): 1066-1074.e1063.
[153] BHATT D M, PANDYA-JONES A, TONG A J, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions[J]. Cell, 2012, 150(2): 279-290.
[154] BOUTZ P L, BHUTKAR A, SHARP P A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns[J]. Genes Dev, 2015, 29(1): 63-80.
[155] LAW J A, JACOBSEN S E. Molecular biology. Dynamic DNA methylation[J]. Science, 2009, 323(5921): 1568-1569.
[156] ZHANG X, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis[J]. Cell, 2006, 126(6): 1189-1201.
[157] ZHANG H, LANG Z, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 489-506.
[158] MATZKE M A, MOSHER R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity[J]. Nat Rev Genet, 2014, 15(6): 394-408.
[159] LAW J A, DU J, HALE C J, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1[J]. Nature, 2013, 498(7454): 385-389.
[160] ZHANG H, MA Z Y, ZENG L, et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV[J]. Proc Natl Acad Sci U S A, 2013, 110(20): 8290-8295.
[161] LIU Z W, SHAO C R, ZHANG C J, et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci[J]. Plos Genetics, 2014, 10(1): e1003948.
[162] JOHNSON L M, DU J, HALE C J, et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation[J]. Nature, 2014, 507(7490): 124-128.
[163] YANG D L, ZHANG G, TANG K, et al. Dicer-independent RNA-directed DNA methylation in Arabidopsis[J]. Cell Research, 2016, 26(1): 66-82.
[164] YE R, CHEN Z, LIAN B, et al. A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis[J]. Mol Cell, 2016, 61(2): 222-235.
[165] ZHENG B, WANG Z, LI S, et al. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis[J]. Genes Dev, 2009, 23(24): 2850-2860.
[166] DUAN C G, ZHANG H, TANG K, et al. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation[J]. Embo Journal, 2015, 34(5): 581-592.
[167] MCCUE A D, PANDA K, NUTHIKATTU S, et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J]. Embo Journal, 2015, 34(1): 20-35.
[168] MARí-ORDóñEZ A, MARCHAIS A, ETCHEVERRY M, et al. Reconstructing de novo silencing of an active plant retrotransposon[J]. Nat Genet, 2013, 45(9): 1029-1039.
[169] HE X J, CHEN T, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Research, 2011, 21(3): 442-465.
[170] KANKEL M W, RAMSEY D E, STOKES T L, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003, 163(3): 1109-1122.
[171] SONG J, RECHKOBLIT O, BESTOR T H, et al. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation[J]. Science, 2011, 331(6020): 1036-1040.
[172] DU J, JOHNSON L M, JACOBSEN S E, et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nat Rev Mol Cell Biol, 2015, 16(9): 519-532.
[173] BOSTICK M, KIM J K, ESTèVE P O, et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells[J]. Science, 2007, 317(5845): 1760-1764.
[174] WOO H R, PONTES O, PIKAARD C S, et al. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization[J]. Genes Dev, 2007, 21(3): 267-277.
[175] WOO H R, DITTMER T A, RICHARDS E J. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis[J]. Plos Genetics, 2008, 4(8): e1000156.
[176] STROUD H, GREENBERG M V, FENG S, et al. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome[J]. Cell, 2013, 152(1-2): 352-364.
[177] LINDROTH A M, CAO X, JACKSON J P, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science, 2001, 292(5524): 2077-2080.
[178] STROUD H, DO T, DU J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nat Struct Mol Biol, 2014, 21(1): 64-72.
[179] DU J, ZHONG X, BERNATAVICHUTE Y V, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants[J]. Cell, 2012, 151(1): 167-180.
[180] JACKSON J P, LINDROTH A M, CAO X, et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase[J]. Nature, 2002, 416(6880): 556-560.
[181] EBBS M L, BARTEE L, BENDER J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases[J]. Mol Cell Biol, 2005, 25(23): 10507-10515.
[182] EBBS M L, BENDER J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase[J]. Plant Cell, 2006, 18(5): 1166-1176.
[183] DU J, JOHNSON L M, GROTH M, et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE[J]. Mol Cell, 2014, 55(3): 495-504.
[184] ZEMACH A, KIM M Y, HSIEH P H, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin[J]. Cell, 2013, 153(1): 193-205.
[185] JEDDELOH J A, STOKES T L, RICHARDS E J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein[J]. Nat Genet, 1999, 22(1): 94-97.
[186] ROCHA P S, SHEIKH M, MELCHIORRE R, et al. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing[J]. Plant Cell, 2005, 17(2): 404-417.
[187] ZHANG H, DENG X, MIKI D, et al. Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis[J]. Plant Cell, 2012, 24(3): 1230-1241.
[188] ZHOU H R, ZHANG F F, MA Z Y, et al. Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis[J]. Plant Cell, 2013, 25(7): 2545-2559.
[189] GROTH M, MOISSIARD G, WIRTZ M, et al. MTHFD1 controls DNA methylation in Arabidopsis[J]. Nat Commun, 2016, 7: 11640.
[190] GONG Z, MORALES-RUIZ T, ARIZA R R, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6): 803-814.
[191] GEHRING M, HUH J H, HSIEH T F, et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation[J]. Cell, 2006, 124(3): 495-506.
[192] ORTEGA-GALISTEO A P, MORALES-RUIZ T, ARIZA R R, et al. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Molecular Biology, 2008, 67(6): 671-681.
[193] ZHANG H, ZHU J K. Active DNA demethylation in plants and animals[J]. Cold Spring Harb Symp Quant Biol, 2012, 77: 161-173.
[194] WU X, ZHANG Y. TET-mediated active DNA demethylation: mechanism, function and beyond[J]. Nat Rev Genet, 2017, 18(9): 517-534.
[195] PENTERMAN J, ZILBERMAN D, HUH J H, et al. DNA demethylation in the Arabidopsis genome[J]. Proc Natl Acad Sci U S A, 2007, 104(16): 6752-6757.
[196] HSIEH T F, IBARRA C A, SILVA P, et al. Genome-wide demethylation of Arabidopsis endosperm[J]. Science, 2009, 324(5933): 1451-1454.
[197] IBARRA C A, FENG X, SCHOFT V K, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes[J]. Science, 2012, 337(6100): 1360-1364.
[198] MARTíNEZ-MACíAS M I, QIAN W, MIKI D, et al. A DNA 3' phosphatase functions in active DNA demethylation in Arabidopsis[J]. Mol Cell, 2012, 45(3): 357-370.
[199] LEE J, JANG H, SHIN H, et al. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis[J]. Nucleic Acids Res, 2014, 42(18): 11408-11418.
[200] LI Y, CóRDOBA-CAñERO D, QIAN W, et al. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected][J]. Plos Genetics, 2015, 11(1): e1004905.
[201] GEHRING M, BUBB K L, HENIKOFF S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting[J]. Science, 2009, 324(5933): 1447-1451.
[202] TANG K, LANG Z, ZHANG H, et al. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications[J]. Nat Plants, 2016, 2(11): 16169.
[203] LEI M, ZHANG H, JULIAN R, et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2015, 112(11): 3553-3557.
[204] LANG Z, WANG Y, TANG K, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit[J]. Proc Natl Acad Sci U S A, 2017, 114(22): E4511-e4519.
[205] DOMCKE S, BARDET A F, ADRIAN GINNO P, et al. Competition between DNA methylation and transcription factors determines binding of NRF1[J]. Nature, 2015, 528(7583): 575-579.
[206] ZHU H, WANG G, QIAN J. Transcription factors as readers and effectors of DNA methylation[J]. Nat Rev Genet, 2016, 17(9): 551-565.
[207] WEI L, GU L, SONG X, et al. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice[J]. Proc Natl Acad Sci U S A, 2014, 111(10): 3877-3882.
[208] HU L, LI N, XU C, et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality[J]. Proc Natl Acad Sci U S A, 2014, 111(29): 10642-10647.
[209] LISTER R, O'MALLEY R C, TONTI-FILIPPINI J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis[J]. Cell, 2008, 133(3): 523-536.
[210] TAKUNO S, GAUT B S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence[J]. Proc Natl Acad Sci U S A, 2013, 110(5): 1797-1802.
[211] DENIZ Ö, FROST J M, BRANCO M R. Author Correction: Regulation of transposable elements by DNA modifications[J]. Nat Rev Genet, 2019, 20(7): 432.
[212] LI Q, GENT J I, ZYNDA G, et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome[J]. Proc Natl Acad Sci U S A, 2015, 112(47): 14728-14733.
[213] GOUIL Q, BAULCOMBE D C. DNA Methylation Signatures of the Plant Chromomethyltransferases[J]. Plos Genetics, 2016, 12(12): e1006526.
[214] KATO M, MIURA A, BENDER J, et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis[J]. Curr Biol, 2003, 13(5): 421-426.
[215] MIROUZE M, REINDERS J, BUCHER E, et al. Selective epigenetic control of retrotransposition in Arabidopsis[J]. Nature, 2009, 461(7262): 427-430.
[216] TSUKAHARA S, KOBAYASHI A, KAWABE A, et al. Bursts of retrotransposition reproduced in Arabidopsis[J]. Nature, 2009, 461(7262): 423-426.
[217] GROB S, SCHMID M W, GROSSNIKLAUS U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[J]. Mol Cell, 2014, 55(5): 678-693.
[218] FENG S, COKUS S J, SCHUBERT V, et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[J]. Mol Cell, 2014, 55(5): 694-707.
[219] ROWLEY M J, ROTHI M H, BöHMDORFER G, et al. Long-range control of gene expression via RNA-directed DNA methylation[J]. Plos Genetics, 2017, 13(5): e1006749.
[220] RAGHAVAN V. Some reflections on double fertilization, from its discovery to the present[J]. New Phytol, 2003, 159(3): 565-583.
[221] ZEMACH A, KIM M Y, SILVA P, et al. Local DNA hypomethylation activates genes in rice endosperm[J]. Proc Natl Acad Sci U S A, 2010, 107(43): 18729-18734.
[222] SLOTKIN R K, VAUGHN M, BORGES F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J]. Cell, 2009, 136(3): 461-472.
[223] KAWAKATSU T, NERY J R, CASTANON R, et al. Dynamic DNA methylation reconfiguration during seed development and germination[J]. Genome Biol, 2017, 18(1): 171.
[224] BOUYER D, KRAMDI A, KASSAM M, et al. DNA methylation dynamics during early plant life[J]. Genome Biol, 2017, 18(1): 179.
[225] NARSAI R, GOUIL Q, SECCO D, et al. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination[J]. Genome Biol, 2017, 18(1): 172.
[226] KLOSINSKA M, PICARD C L, GEHRING M. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus[J]. Nat Plants, 2016, 2: 16145.
[227] PIGNATTA D, ERDMANN R M, SCHEER E, et al. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting[J]. Elife, 2014, 3: e03198.
[228] BAUBEC T, FINKE A, MITTELSTEN SCHEID O, et al. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis[J]. EMBO Rep, 2014, 15(4): 446-452.
[229] ALLEMAN M, SIDORENKO L, MCGINNIS K, et al. An RNA-dependent RNA polymerase is required for paramutation in maize[J]. Nature, 2006, 442(7100): 295-298.
[230] ERHARD K F, JR., STONAKER J L, PARKINSON S E, et al. RNA polymerase IV functions in paramutation in Zea mays[J]. Science, 2009, 323(5918): 1201-1205.
[231] CANDAELE J, DEMUYNCK K, MOSOTI D, et al. Differential methylation during maize leaf growth targets developmentally regulated genes[J]. Plant Physiology, 2014, 164(3): 1350-1364.
[232] CAO X, JACOBSEN S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes[J]. Proc Natl Acad Sci U S A, 2002, 99 Suppl 4(Suppl 4): 16491-16498.
[233] ZHONG S, FEI Z, CHEN Y R, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J]. Nat Biotechnol, 2013, 31(2): 154-159.
[234] SATGé C, MOREAU S, SALLET E, et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula[J]. Nat Plants, 2016, 2(11): 16166.
[235] RAMBANI A, RICE J H, LIU J, et al. The Methylome of Soybean Roots during the Compatible Interaction with the Soybean Cyst Nematode[J]. Plant Physiology, 2015, 168(4): 1364-1377.
[236] HEWEZI T, LANE T, PIYA S, et al. Cyst Nematode Parasitism Induces Dynamic Changes in the Root Epigenome[J]. Plant Physiology, 2017, 174(1): 405-420.
[237] YU A, LEPèRE G, JAY F, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proc Natl Acad Sci U S A, 2013, 110(6): 2389-2394.
[238] YONG-VILLALOBOS L, GONZáLEZ-MORALES S I, WROBEL K, et al. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation[J]. Proc Natl Acad Sci U S A, 2015, 112(52): E7293-7302.
[239] XU R, WANG Y, ZHENG H, et al. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis[J]. J Exp Bot, 2015, 66(19): 5997-6008.
[240] ZHANG B, TIEMAN D M, JIAO C, et al. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation[J]. Proc Natl Acad Sci U S A, 2016, 113(44): 12580-12585.
[241] SECCO D, WANG C, SHOU H, et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements[J]. Elife, 2015, 4.
[242] JIANG C, MITHANI A, BELFIELD E J, et al. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations[J]. Genome Res, 2014, 24(11): 1821-1829.
[243] WIBOWO A, BECKER C, MARCONI G, et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity[J]. Elife, 2016, 5.
[244] SANCHEZ D H, PASZKOWSKI J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene[J]. Plos Genetics, 2014, 10(11): e1004806.
[245] NIEDERHUTH C E, BEWICK A J, JI L, et al. Widespread natural variation of DNA methylation within angiosperms[J]. Genome Biol, 2016, 17(1): 194.
[246] EICHTEN S R, BRISKINE R, SONG J, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations[J]. Plant Cell, 2013, 25(8): 2783-2797.
[247] TURCO G M, KAJALA K, KUNDE-RAMAMOORTHY G, et al. DNA methylation and gene expression regulation associated with vascularization in Sorghum bicolor[J]. New Phytol, 2017, 214(3): 1213-1229.
[248] LIN J Y, LE B H, CHEN M, et al. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development[J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9730-e9739.
[249] FANG Y, WANG X, WANG L, et al. Functional characterization of open chromatin in bidirectional promoters of rice[J]. Sci Rep, 2016, 6: 32088.
[250] TAN F, ZHOU C, ZHOU Q, et al. Analysis of chromatin regulators reveals specific features of rice DNA methylation pathways[J]. Plant Physiol, 2016, 171(3): 2041-2054.
[251] ZHENG D, WANG L, CHEN L, et al. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice[J]. Plant Cell Physiol, 2019, 60(8): 1790-1803.
[252] KAWAHARA Y, DE LA BASTIDE M, HAMILTON J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice (N Y), 2013, 6(1): 4.
[253] BROWN A V, CONNERS S I, HUANG W, et al. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database[J]. Nucleic Acids Res, 2021, 49(D1): D1496-d1501.
[254] A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194): 1251788.
[255] HU Y, CHEN J, FANG L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nat Genet, 2019, 51(4): 739-748.
[256] SONG J M, XIE W Z, WANG S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice[J]. Mol Plant, 2021, 14(10): 1757-1767.
[257] VOGEL J P, GARVIN D F, MOCKLER T C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282): 763-768.
[258] JIAO Y, PELUSO P, SHI J, et al. Improved maize reference genome with single-molecule technologies[J]. Nature, 2017, 546(7659): 524-527.
[259] MCCORMICK R F, TRUONG S K, SREEDASYAM A, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization[J]. Plant J, 2018, 93(2): 338-354.
[260] SHEARER L A, ANDERSON L K, DE JONG H, et al. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome[J]. G3: Genes | Genomes | Genetics, 2014, 4(8): 1395-1405.
[261] KUMAR S, NEI M, DUDLEY J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Brief Bioinform, 2008, 9(4): 299-306.
[262] WANG C, SHEN L, FU Y, et al. A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice[J]. Journal of Genetics and Genomics, 2015, 42(12): 703-706.
[263] HU X, MENG X, LIU Q, et al. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnol J, 2018, 16(1): 292-297.
[264] LIU Q, WANG C, JIAO X, et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems[J]. Sci China Life Sci, 2019, 62(1): 1-7.
[265] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360.
[266] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079.
[267] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295.
[268] SONG J M, XIE W Z, WANG S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice[J]. Mol Plant, 2021.
[269] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550.
[270] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnetjournal; Vol 17, No 1: Next Generation Sequencing Data AnalysisDO - 1014806/ej171200, 2011.
[271] ANDERS S, PYL P T, HUBER W. HTSeq—a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169.
[272] LI H. Minimap2: pairwise alignment for nucleotide sequences[J]. Bioinformatics, 2018, 34(18): 3094-3100.
[273] CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421.
[274] SOREFAN K, PAIS H, HALL A E, et al. Reducing ligation bias of small RNAs in libraries for next generation sequencing[J]. Silence, 2012, 3(1): 4.
[275] TSUJI J, WENG Z. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data[J]. PLoS One, 2016, 11(10): e0164228.
[276] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3): R25.
[277] XI Y, LI W. BSMAP: whole genome bisulfite sequence MAPping program[J]. BMC Bioinformatics, 2009, 10: 232.
[278] STROUD H, DING B, SIMON S A, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. Elife, 2013, 2: e00354.
[279] SCHULTZ M D, SCHMITZ R J, ECKER J R. 'Leveling' the playing field for analyses of single-base resolution DNA methylomes[J]. Trends Genet, 2012, 28(12): 583-585.
[280] AKALIN A, KORMAKSSON M, LI S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles[J]. Genome Biol, 2012, 13(10): R87.
[281] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357-359.
[282] SHEN L, SHAO N, LIU X, et al. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases[J]. BMC Genomics, 2014, 15: 284.
[283] ALEXA A, RAHNENFUHRER J, LENGAUER T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure[J]. Bioinformatics, 2006, 22(13): 1600-1607.
[284] LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559.
[285] ZHANG H, ZHANG F, YU Y, et al. A comprehensive online database for exploring ∼20,000 public Arabidopsis RNA-Seq libraries[J]. Mol Plant, 2020.
[286] DELCHER A L, PHILLIPPY A, CARLTON J, et al. Fast algorithms for large-scale genome alignment and comparison[J]. Nucleic Acids Res, 2002, 30(11): 2478-2483.
[287] ZHANG J, CHEN L L, XING F, et al. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63[J]. Proc Natl Acad Sci U S A, 2016, 113(35): E5163-5171.
[288] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49.
[289] ZHANG Y, HARRIS C J, LIU Q, et al. Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E1069-e1074.
[290] OPSAHL-FERSTAD H G, LE DEUNFF E, DUMAS C, et al. ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo[J]. Plant Journal, 1997, 12(1): 235-246.
[291] SANO Y. Differential regulation of waxy gene expression in rice endosperm[J]. Theor Appl Genet, 1984, 68(5): 467-473.
[292] SONG L, NGUYEN N, DESHMUKH R K, et al. Soybean TIP Gene Family Analysis and Characterization of GmTIP1;5 and GmTIP2;5 Water Transport Activity[J]. Frontiers in plant science, 2016, 7: 1564-1564.
[293] CHENG X, ZHU L, HE G. Towards understanding of molecular interactions between rice and the brown planthopper[J]. Mol Plant, 2013, 6(3): 621-634.
[294] LIU Y, WU H, CHEN H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nat Biotechnol, 2015, 33(3): 301-305.
[295] LIPPMAN Z B, ZAMIR D. Heterosis: revisiting the magic[J]. Trends Genet, 2007, 23(2): 60-66.
[296] XIE F, ZHANG J. Shanyou 63: an elite mega rice hybrid in China[J]. Rice (N Y), 2018, 11(1): 17.
[297] XIAO W, CUSTARD K D, BROWN R C, et al. DNA methylation is critical for Arabidopsis embryogenesis and seed viability[J]. Plant Cell, 2006, 18(4): 805-814.
[298] PILLOT M, BAROUX C, VAZQUEZ M A, et al. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis[J]. Plant Cell, 2010, 22(2): 307-320.
[299] JULLIEN P E, SUSAKI D, YELAGANDULA R, et al. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana[J]. Curr Biol, 2012, 22(19): 1825-1830.
[300] KOROTKO U, CHWIAŁKOWSKA K, SAŃKO-SAWCZENKO I, et al. DNA Demethylation in Response to Heat Stress in Arabidopsis thaliana[J]. Int J Mol Sci, 2021, 22(4).
[301] GAO G, LI J, LI H, et al. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings[J]. Breed Sci, 2014, 64(2): 125-133.
[302] SHEN X, DE JONGE J, FORSBERG S K, et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality[J]. Plos Genetics, 2014, 10(12): e1004842.
[303] XIE H, SUN Y, CHENG B, et al. Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana[J]. Plant Cell Physiol, 2019, 60(1): 152-165.
[304] TAN F, ZHOU C, ZHOU Q, et al. Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways[J]. Plant Physiology, 2016, 171(3): 2041-2054.
[305] BORGES F, MARTIENSSEN R A. The expanding world of small RNAs in plants[J]. Nat Rev Mol Cell Biol, 2015, 16(12): 727-741.
[306] SONG X, LI Y, CAO X, et al. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions[J]. Annu Rev Plant Biol, 2019, 70: 489-525.
[307] ZHANG Q, LIANG Z, CUI X, et al. N(6)-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses[J]. Mol Plant, 2018, 11(12): 1492-1508.
[308] YU J, HU S, WANG J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92.
[309] NIEDERHUTH C E, BEWICK A J, JI L, et al. Widespread natural variation of DNA methylation within angiosperms[J]. Genome Biol, 2016, 17(1): 194.
[310] SMARDA P, BURES P, HOROVA L, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots[J]. Proc Natl Acad Sci USA, 2014, 111(39): E4096-4102.
[311] TATARINOVA T V, ALEXANDROV N N, BOUCK J B, et al. GC3 biology in corn, rice, sorghum and other grasses[J]. BMC Genomics, 2010, 11: 308.
[312] BEWICK A J, NIEDERHUTH C E, JI L, et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants[J]. Genome Biol, 2017, 18(1): 65.
[313] LI Q, EICHTEN S R, HERMANSON P J, et al. Genetic perturbation of the maize methylome[J]. Plant Cell, 2014, 26(12): 4602-4616.
[314] BESTOR T H, VERDINE G L. DNA methyltransferases[J]. Curr Opin Cell Biol, 1994, 6(3): 380-389.
[315] HENDERSON I R, DELERIS A, WONG W, et al. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana[J]. Plos Genetics, 2010, 6(10): e1001182.
[316] ZHONG X, HALE C J, NGUYEN M, et al. Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2015, 112(3): 911-916.
[317] LONG J, LIU J, XIA A, et al. Maize Decrease in DNA methylation 1 targets RNA-directed DNA methylation on active chromatin[J]. Plant Cell, 2021.
[318] LANG Z, LEI M, WANG X, et al. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing[J]. Mol Cell, 2015, 57(6): 971-983.
[319] LI D, PALANCA A M S, WON S Y, et al. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status[J]. Elife, 2017, 6.
[320] ZHOU M, PALANCA A M S, LAW J A. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family[J]. Nat Genet, 2018, 50(6): 865-873.

所在学位评定分委会
生物系
国内图书分类号
Q37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353268
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
于义溟. 水稻转录调控的大数据分析与DNA甲基化调控模式的探究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849507-于义溟-生物系.pdf(24379KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于义溟]的文章
百度学术
百度学术中相似的文章
[于义溟]的文章
必应学术
必应学术中相似的文章
[于义溟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。