[1] PAGE M J, GRIFFITHS T A, BLEACKLEY M R, et al. Proteomics: applications relevant to transfusion medicine [J]. Transfus Med Rev, 2006, 20(1): 63-74.
[2] WILKINS M R, PASQUALI C, APPEL R D, et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis [J]. Bio/Technology, 1996, 14(1): 61-5.
[3] WILHELM M, SCHLEGL J, HAHNE H, et al. Mass-spectrometry-based draft of the human proteome [J]. Nature, 2014, 509(7502): 582-7.
[4] WANG D, ERASLAN B, WIELAND T, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues [J]. Mol Syst Biol, 2019, 15(2): e8503.
[5] GEYER P E, HOLDT L M, TEUPSER D, et al. Revisiting biomarker discovery by plasma proteomics [J]. Mol Syst Biol, 2017, 13(9): 942.
[6] GEYER P E, KULAK N A, PICHLER G, et al. Plasma Proteome Profiling to Assess Human Health and Disease [J]. Cell Syst, 2016, 2(3): 185-95.
[7] GEYER P E, VOYTIK E, TREIT P V, et al. Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies [J]. EMBO Mol Med, 2019, 11(11): e10427.
[8] NIU L, GEYER P E, WEWER ALBRECHTSEN N J, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease [J]. Mol Syst Biol, 2019, 15(3): e8793.
[9] GE S, XIA X, DING C, et al. A proteomic landscape of diffuse-type gastric cancer [J]. Nat Commun, 2018, 9(1): 1012.
[10] BADER J M, GEYER P E, MULLER J B, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease [J]. Mol Syst Biol, 2020, 16(6): e9356.
[11] FENN J, MANN M, MENG C, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. 1989, 246(4926): 64-71.
[12] KARAS M, HILLENKAMP F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons [J]. Analytical chemistry, 1988, 60(20): 2299-301.
[13] TIAN R. Exploring intercellular signaling by proteomic approaches [J]. Proteomics, 2014, 14(4-5): 498-512.
[14] YE X, TANG J, MAO Y, et al. Integrated proteomics sample preparation and fractionation: Method development and applications [J]. TrAC Trends in Analytical Chemistry, 2019, 120: 115667-80.
[15] RAPPSILBER J, ISHIHAMA Y, MANN M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics [J]. Anal Chem, 2003, 75(3): 663-70.
[16] YU Y, SUH M J, SIKORSKI P, et al. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics [J]. Anal Chem, 2014, 86(11): 5470-7.
[17] LU X, WANG Z, GAO Y, et al. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation [J]. Anal Chem, 2020, 92(13): 8893-900.
[18] MÜLLER T, KALXDORF M, LONGUESPÉE R, et al. Automated sample preparation with SP3 for low-input clinical proteomics [M]. 2019.
[19] WILSON S R, VEHUS T, BERG H S, et al. Nano-LC in proteomics: recent advances and approaches [J]. Bioanalysis, 2015, 7(14): 1799-815.
[20] WILM M, MANN M. Analytical properties of the nanoelectrospray ion source [J]. Anal Chem, 1996, 68(1): 1-8.
[21] DUBROVSKII Y, MURASHKO E, CHUPRINA O, et al. Mass spectrometry based proteomic approach for the screening of butyrylcholinesterase adduct formation with organophosphates [J]. Talanta, 2019, 197: 374-82.
[22] DISTLER U, LACKI M K, SCHUMANN S, et al. Enhancing Sensitivity of Microflow-Based Bottom-Up Proteomics through Postcolumn Solvent Addition [J]. Analytical Chemistry, 2019, 91(12): 7510-5.
[23] DE GODOY L M, OLSEN J V, COX J, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast [J]. Nature, 2008, 455(7217): 1251-4.
[24] GO E P, REBECCHI K R, DESAIRE H. In-solution digestion of glycoproteins for glycopeptide-based mass analysis [J]. Methods Mol Biol, 2013, 951: 103-11.
[25] LIEBLER D C, HAM A J. Spin filter-based sample preparation for shotgun proteomics [J]. Nat Methods, 2009, 6(11): 785; author reply -6.
[26] CHEN W, ADHIKARI S, CHEN L, et al. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling [J]. J Chromatogr A, 2017, 1498: 207-14.
[27] RAPPSILBER J, MANN M, ISHIHAMA Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips [J]. Nat Protoc, 2007, 2(8): 1896-906.
[28] MIKULÁŠEK K, KONEČNÁ H, POTĚŠIL D, et al. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS [J]. Front Plant Sci, 2021, 12: 635550.
[29] CHEN W, WANG S, ADHIKARI S, et al. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling [J]. Analytical chemistry, 2016, 88(9): 4864-71.
[30] XUE L, LIN L, ZHOU W, et al. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling [J]. Journal of chromatography A, 2018, 1564: 76-84.
[31] XU R, TANG J, DENG Q, et al. Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology [J]. Anal Chem, 2018, 90(9): 5879-86.
[32] HUANG P, LI H, GAO W, et al. A Fully Integrated Spintip-Based Approach for Sensitive and Quantitative Profiling of Region-Resolved in Vivo Brain Glycoproteome [J]. Anal Chem, 2019, 91(14): 9181-9.
[33] CHEN W, CHEN L, TIAN R. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples [J]. Analyst, 2018, 143(15): 3693-701.
[34] ZHANG X, CHEN W, NING Z, et al. Deep Metaproteomics Approach for the Study of Human Microbiomes [J]. Analytical chemistry, 2017, 89(17): 9407-15.
[35] HUANG P, KONG Q, GAO W, et al. Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics [J]. Analytica chimica acta, 2020, 1127: 140-8.
[36] LIN L, ZHENG J, YU Q, et al. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis [J]. J Proteomics, 2018, 174: 9-16.
[37] KE M, LIU J, CHEN W, et al. Integrated and Quantitative Proteomic Approach for Charting Temporal and Endogenous Protein Complexes [J]. Analytical chemistry, 2018, 90(21): 12574-83.
[38] WIŚNIEWSKI J R, ZOUGMAN A, NAGARAJ N, et al. Universal sample preparation method for proteome analysis [J]. Nat Methods, 2009, 6(5): 359-62.
[39] ZHANG Z B, DUBIAK K M, HUBER P W, et al. Miniaturized Filter-Aided Sample Preparation (MICRO-FASP) Method for High Throughput, Ultrasensitive Proteomics Sample Preparation Reveals Proteome Asymmetry in Xenopus laevis Embryos [J]. Anal Chem, 2020, 92(7): 5554-60.
[40] RAPPSILBER J, ISHIHAMA Y, MANN M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics [J]. Analytical chemistry, 2003, 75(3): 663-70.
[41] KULAK N A, PICHLER G, PARON I, et al. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells [J]. Nature methods, 2014, 11(3): 319-24.
[42] MESSNER C B, DEMICHEV V, WENDISCH D, et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection [J]. Cell Systems, 2020, 11(1): 11-24.e4.
[43] BURNS A P, ZHANG Y-Q, XU T, et al. A Universal and High-Throughput Proteomics Sample Preparation Platform [J]. Analytical chemistry, 2021.
[44] LEUTERT M, RODRIGUEZ-MIAS R A, FUKUDA N K, et al. R2-P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies [J]. Mol Syst Biol, 2019, 15(12): e9021.
[45] MULLER J B, GEYER P E, COLACO A R, et al. The proteome landscape of the kingdoms of life [J]. Nature, 2020.
[46] HUGHES C S, FOEHR S, GARFIELD D A, et al. Ultrasensitive proteome analysis using paramagnetic bead technology [J]. Mol Syst Biol, 2014, 10: 757.
[47] HUGHES C S, MOGGRIDGE S, MULLER T, et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments [J]. Nat Protoc, 2019, 14(1): 68-85.
[48] MÜLLER T, KALXDORF M, LONGUESPÉE R, et al. Automated sample preparation with SP3 for low-input clinical proteomics [J]. Molecular Systems Biology, 2020, 16(1).
[49] ANGEL T E, ARYAL U K, HENGEL S M, et al. Mass spectrometry-based proteomics: existing capabilities and future directions [J]. Chem Soc Rev, 2012, 41(10): 3912-28.
[50] XIE F, SMITH R D, SHEN Y. Advanced proteomic liquid chromatography [J]. Journal of Chromatography A, 2012, 1261: 78-90.
[51] SHI Y, XIANG R, HORVATH C, et al. The role of liquid chromatography in proteomics [J]. J Chromatogr A, 2004, 1053(1-2): 27-36.
[52] DAMS M, DORES-SOUSA J L, LAMERS R J, et al. High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples [J]. Chromatographia, 2019, 82(1): 101-10.
[53] BRUDERER R, MUNTEL J, MULLER S, et al. Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance [J]. Mol Cell Proteomics, 2019, 18(6): 1242-54.
[54] KONG Q, HUANG P, CHU B, et al. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes [J]. Anal Chem, 2020, 92(13): 8933-42.
[55] HINNEBURG H, CHATTERJEE S, SCHIRMEISTER F, et al. Post-Column Make-Up Flow (PCMF) Enhances the Performance of Capillary-Flow PGC-LC-MS/MS-Based Glycomics [J]. Analytical Chemistry, 2019, 91(7): 4559-67.
[56] ROUX-DALVAI F, GOTTI C, LECLERCQ M, et al. Fast and Accurate Bacterial Species Identification in Urine Specimens Using LC-MS/MS Mass Spectrometry and Machine Learning [J]. Molecular & Cellular Proteomics, 2019, 18(12): 2492-505.
[57] MESSNER C B, DEMICHEV V, BLOOMFIELD N, et al. Ultra-fast proteomics with Scanning SWATH [J]. Nat Biotechnol, 2021, 39(7): 846-54.
[58] LESUR A, SCHMIT P O, BERNARDIN F, et al. Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF [J]. Anal Chem, 2021, 93(3): 1383-92.
[59] MEIER F, GEYER P E, VIRREIRA WINTER S, et al. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes [J]. Nat Methods, 2018, 15(6): 440-8.
[60] BEKKER-JENSEN D B, MARTINEZ-VAL A, STEIGERWALD S, et al. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients [J]. Mol Cell Proteomics, 2020, 19(4): 716-29.
[61] ADONI K R, CUNNINGHAM D L, HEATH J K, et al. FAIMS Enhances the Detection of PTM Crosstalk Sites [J]. J Proteome Res, 2022.
[62] HEBERT A S, PRASAD S, BELFORD M W, et al. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer [J]. Anal Chem, 2018, 90(15): 9529-37.
[63] MEIER F, BRUNNER A D, KOCH S, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer [J]. Mol Cell Proteomics, 2018, 17(12): 2534-45.
[64] MEIER F, BECK S, GRASSL N, et al. Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device [J]. J Proteome Res, 2015, 14(12): 5378-87.
[65] MEIER F, BRUNNER A D, FRANK M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition [J]. Nat Methods, 2020, 17(12): 1229-36.
[66] HE Y, RASHAN E H, LINKE V, et al. Multi-Omic Single-Shot Technology for Integrated Proteome and Lipidome Analysis [J]. Anal Chem, 2021, 93(9): 4217-22.
[67] MAJUTA S N, DEBASTIANI A, LI P, et al. Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance 'Omits Analyses [J]. J Am Soc Mass Spectr, 2021, 32(2): 473-85.
[68] LENCO J, VAJRYCHOVA M, PIMKOVA K, et al. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses [J]. Anal Chem, 2018, 90(8): 5381-9.
[69] BIAN Y, ZHENG R, BAYER F P, et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS [J]. Nat Commun, 2020, 11(1): 157.
[70] BIAN Y, THE M, GIANSANTI P, et al. Identification of 7000-9000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC-MS/MS [J]. Anal Chem, 2021, 93(25): 8687-92.
[71] BIAN Y, BAYER F P, CHANG Y C, et al. Robust Microflow LC-MS/MS for Proteome Analysis: 38000 Runs and Counting [J]. Anal Chem, 2021, 93(8): 3686-90.
修改评论