中文版 | English
题名

铑、镍催化α-官能团化酮的不对称氢化反应研究

其他题名
Rh-, Ni-CATALYZED ASYMMETRIC HYDROGENATION OF α-FUNCTIONALIZED KETONES
姓名
姓名拼音
WANG Fangyuan
学号
11849575
学位类型
博士
学位专业
0817 化学工程与技术
学科门类/专业学位类别
08 工学
导师
张绪穆
导师单位
理学院
论文答辩日期
2022-05-17
论文提交日期
2022-07-12
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

手性醇及其衍生物普遍存在于人类的日常生活和生产中。其中,手性仲醇是合成多种药物分子的关键中间体,而酮的不对称氢化和转移氢化是目前制备手性仲醇类化合物最有效的方法之一。过去的20年中,在酮的不对称氢化和转移氢化领域涌现出了很多高效、高选择性的催化体系,推动了手性醇的工业化制备进程。近十年,酮的不对称氢化技术愈加成熟,廉价金属催化体系的相继建立让该领域焕发了新的生机。但是,一些挑战性底物,如前手性直链脂肪酮、二芳基酮及一些特殊官能团化酮的不对称氢化反应,仍然存在活性差、对映选择性难控制等问题。因此,探索新的催化体系来实现这类酮的高对映选择性氢化具有非常重要的研究意义。本文研究了四类特殊官能团化酮的不对称氢化和转移氢化反应,制备了四类含连续两个手性中心的醇类化合物,主要内容有:

α-胺基-α′-氯甲基酮作为底物,借助Rh(III)催化剂,在低催化剂负载下,通过不对称转移氢化的方法实现了30多例α-胺基烷基-α′-氯甲基醇类化合物的高效制备,产物收率高达99%dr值高达99:1与此同时,使用标准反应条件可以实现手性产物的克级规模制备,反应的TON高达4 900该反应具有很好的官能团耐受性,对于α烷基、芳基和杂芳环取代的底物都具有很好的非对映选择性控制。此外,通过使用不同立体构型的催化剂能够分别获得两个非对映异构体。这种高效、高立体选择性的方法为HIV蛋白酶抑制剂的关键中间体的合成提供了一种有效且简明的方法

α-取代-β-羰基腈作为底物,借助1 mol%Rh(III)催化剂,通过动态动力学拆分不对称转移氢化方法实现了26α-取代-β-羟基腈类化合物的高效制备,产物有高达98%的分离收率,>99%ee值和>99:1dr值。该反应具有很好的官能团耐受性,对于α烷基、芳基、杂芳环和苯并环状取代的底物都具有很好的对映选择性和非对映选择性控制,且以反式构型的产物为主。此外,DFT计算揭示了非对映选择性的来源,为反式构型产物的生成提供了合理的解释。通过产物β-羟基腈的氰基官能团化可以分别获得高收率、高光学纯的药物分子伊培沙宗和他喷他多的关键中间体。

3-羟基-4-取代马来酰亚胺作为底物,借助Rh(III)催化剂,通过动态动力学拆分不对称转移氢化方法实现了503-羟基-4-取代琥珀酰亚胺化合物的高效制备,产物有高达>99%ee值和>99:1dr值,反应TON最高达到2 000。该反应具有很好的官能团耐受性,对于芳基、杂芳环和烷基取代的底物都具有很好的对映选择性和非对映选择性控制,且通过巧妙调控反应体系中碱的含量,可以获得顺式构型和反式构型的3-羟基-4-取代琥珀酰亚胺。此外,通过提高催化剂的用量,邻近羟基的酰亚胺羰基也能被还原,得到高对映纯度的连续三个手性中心的产物。DFT计算揭示了该反应过程是以碳氧双键还原为主导,证明了该反应是经历了动态动力学拆分的过程。重要的是,通过酰亚胺或者羟基的官能团化反应,能够获得多种手性氮杂五元环化合物,为许多天然产物和药物的关键中间体的合成提供了有效途径。

手性α-羟基-β-内酰胺是许多生物活性分子和抗生素的关键片段,因此,发展这些化合物的高效合成方法具有重要的应用价值。本文通过采用廉价金属镍催化的高效动态动力学拆分的还原方法,高对映选择性和高非对映选择性地获得了27β-内酰胺化合物。该转化采用了一种新颖的质子梭策略,实现了内酰胺类底物的动态动力学不对称氢化,产物收率高达92%ee值高达94%。氘标记实验表明,苯次磷酸在α-羰基-β-内酰胺的烯醇异构化过程中起着传输质子的关键作用。另外,用该合成方法得到的手性醇能够高效地转化为药物分子Taxol(+)-epi-Cytoxazone的关键中间体。

其他摘要

Chiral alcohol compounds and their derivatives are ubiquitous in our daily life and production. Asymmetric (transfer) hydrogenation of ketones is currently one of the most effective methods for preparing chiral secondary alcohol compounds. In the past 20 years, many efficient and highly selective catalytic systems have emerged for the asymmetric (transfer) hydrogenation of ketones, which has greatly promoted the industrial preparation of chiral alcohols. In the past decade, the technology of asymmetric (transfer) hydrogenation of ketones has become more and more mature, and the successive establishment of inexpensive metal catalytic systems has brought new vitality to the field. However, the reduction of some challenging substrates, such as pre-chiral linear aliphatic ketones and some special functionalized ketones, is still unsolved, so it is necessary to explore new catalytic systems to solve practical problems. This thesis mainly studies the synthesis of alcohol compounds with two consecutive chiral centers, including the following aspects:

A highly efficient diastereoselective transfer hydrogenation of α-aminoalkyl-α′-chloromethyl ketones catalyzed by a tethered rhodium complex was developed and successfully utilized in the synthesis of the key intermediates of HIV protease inhibitors. With the current Rh(III) catalyst system, a series of chiral 3-amino-1-chloro-2-hydroxy-4-phenylbutanes were produced in excellent yields and diastereoselectivities (up to 99% yield, up to 99:1 dr). Both diastereomers of the desired products could be efficiently accessed by using the two enantiomers of the Rh(III) catalyst.

A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-β-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of β-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-β-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.

In thesis, an efficient and high enantioselective asymmetric transfer hydrogenation of 3-hydroxy-4-substituted maleimide derivatives was successfully developed. For chiral 3-hydroxy-4-substituted-maleimides, the Rh catalyst can complete the reaction with a TON of up to 2 000, and the reaction product, substituted succinimide has excellent enantioselectivity and diastereoselectivity (up to >99% ee and up to >99:1 dr). Importantly, this method enables the synthesis of cis- and trans-configured substituted succinimides by ingeniously controlling the alkali content in the reaction system. Furthermore, the establishment of this methodology also provides an efficient route for the synthetic development of chiral pyrrolidine derivatives, which are key intermediates of many chiral natural products and pharmaceuticals.

Chiral α-hydroxy-β-lactams are key fragments of many bioactive compounds and antibiotics, so that the development of efficient synthetic methods for these compounds is of great value. The highly enantioselective dynamic kinetic resolution (DKR) of α-keto-β-lactams was realized via a novel proton shuttling strategy. A wide range of α-keto-β-lactams were reduced efficiently and enantioselectively by Ni-catalyzed asymmetric hydrogenation, providing the corresponding α-hydroxy-β-lactams derivatives with high yields and enantioselectivities (up to 92% yield, up to 94% ee). Deuteriumlabelling experiments indicate that phenylphosphinic acid plays a pivotal role in the DKR of α-keto-β-lactams by promoting the enolization process. The synthetic potential of this protocol was demonstrated by its application in the synthesis of a key intermediates of Taxol and (+)-epi-Cytoxazone.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-06
参考文献列表

[1] Akabori S, Sakurai S, Izumi Y, et al. An Asymmetric Catalyst[J]. Nature, 1956, 178(4528): 323-324.
[2] Osborn J A, Jardine F H, Young J F, et al. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, 1711-1732.
[3] Knowles W S, Sabacky M J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex[J]. Chemical Communications (London), 1968, 1445-1446.
[4] Horner L, Siegel H, Büthe H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution[J]. Angewandte Chemie International Edition, 1968, 7(12): 942-942.
[5] Knowles W S, Sabacky M J, Vineyard B D, et al. Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine[J]. Journal of the American Chemical Society, 1975, 97(9): 2567-2568.
[6] Noyori R, Ohkuma T, Kitamura M, et al. Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity[J]. Journal of the American Chemical Society, 1987, 109(19): 5856-5858.
[7] Meerwein H, Schmidt R. Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen[J]. Justus Liebig's Annalen der Chemie, 1925, 444(1): 221-238.
[8] Fujii A, Hashiguchi S, Uematsu N, et al. Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid−Triethylamine Mixture[J]. Journal of the American Chemical Society, 1996, 118(10): 2521-2522.
[9] Wang D, Astruc D. The golden age of transfer hydrogenation[J]. Chemical Reviews, 2015, 115(13): 6621-6686.
[10] Zhang X, Taketomi T, Yoshizumi T, et al. Asymmetric hydrogenation of cycloalkanones catalyzed by BINAP-iridium(I)-aminophosphine systems[J]. Journal of the American Chemical Society, 2002, 115(8): 3318-3319.
[11] Ohkuma T, Ooka H, Hashiguchi S, et al. Practical Enantioselective Hydrogenation of Aromatic Ketones[J]. Journal of the American Chemical Society, 1995, 117(9): 2675-2676.
[12] Xie J H, Wang L X, Fu Y, et al. Synthesis of spiro diphosphines and their application in asymmetric hydrogenation of ketones[J]. Journal of the American Chemical Society, 2003, 125(15): 4404-4405.
[13] Li W, Sun X, Zhou L, et al. Highly efficient and highly enantioselective asymmetric hydrogenation of ketones with TunesPhos/1,2-diamine-ruthenium(II) complexes[J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-1399.
[14] Jing Q, Zhang X, Sun J, et al. Bulky Achiral Triarylphosphines Mimic BINAP in Ru(II)- Catalyzed Asymmetric Hydrogenation of Ketones[J]. Advanced Synthesis & Catalysis, 2005, 347(9): 1193-1197.
[15] Genov D G, Ager D J. Asymmetric hydrogenation of ketones catalyzed by RuII-bicp complexes[J]. Angewandte Chemie International Edition, 2004, 43(21): 2816-2819.
[16] Arai N, Ooka H, Azuma K, et al. General asymmetric hydrogenation of alpha-branched aromatic ketones catalyzed by TolBINAP/DMAPEN-ruthenium(II) complex[J]. Organic Letters, 2007, 9(5): 939-941.
[17] Ohkuma T, Koizumi M, Muniz K, et al. trans-RuH(eta1-BH4)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions[J]. Journal of the American Chemical Society, 2002, 124(23): 6508-6509.
[18] Matsumura K, Arai N, Hori K, et al. Chiral ruthenabicyclic complexes: precatalysts for rapid, enantioselective, and wide-scope hydrogenation of ketones[J]. Journal of the American Chemical Society, 2011, 133(28): 10696-10699.
[19] Hashiguchi S, Fujii A, Takehara J, et al. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes[J]. Journal of the American Chemical Society, 2002, 117(28): 7562-7563.
[20] Hannedouche J, Clarkson G J, Wills M. A new class of "tethered" ruthenium(II) catalyst for asymmetric transfer hydrogenation reactions[J]. Journal of the American Chemical Society, 2004, 126(4): 986-987.
[21] Wakeham R J, Morris J A, Williams J M J. Alternative Hydrogen Source for Asymmetric Transfer Hydrogenation in the Reduction of Ketones[J]. ChemCatChem, 2015, 7(24): 4039-4041.
[22] Ito M, Endo Y, Ikariya T. Well-Defined Triflylamide-Tethered Arene−Ru(Tsdpen) Complexes for Catalytic Asymmetric Hydrogenation of Ketones[J]. Organometallics, 2008, 27(23): 6053-6055.
[23] Touge T, Hakamata T, Nara H, et al. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation[J]. Journal of the American Chemical Society, 2011, 133(38): 14960-14963.
[24] Takehara J, Hashiguchi S, Fujii A, et al. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol[J]. Chemical Communications, 1996, 233-234.
[25] Nordin S J M, Roth P, Tarnai T, et al. Remote Dipole Effects as a Means to Accelerate [Ru(amino alcohol)]-Catalyzed Transfer Hydrogenation of Ketones[J]. European Journal of Organic Chemistry 2001, 7(7): 1431-1436.
[26] Naud F, Malan C, Spindler F, et al. Ru-(Phosphine-Oxazoline) Complexes as Effective, Industrially Viable Catalysts for the Enantioselective Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2006, 348(1-2): 47-50.
[27] Schuecker R, Zirakzadeh A, Mereiter K, et al. Synthesis, Coordination Behavior, and Structural Features of Chiral Amino-, Pyrazolyl-, and Phosphino-Substituted Ferrocenyloxazolines and Their Application in Asymmetric Hydrogenations[J]. Organometallics, 2011, 30(17): 4711-4719.
[28] Guo H, Liu D, Butt N A, et al. Efficient Ru(II)-catalyzed asymmetric hydrogenation of simple ketones with C2-symmetric planar chiral metallocenyl phosphinooxazoline ligands[J]. Tetrahedron, 2012, 68(16): 3295-3299.
[29] Müller D, Umbricht G, Weber B, et al. C2-Symmetric 4,4′,5,5′-Tetrahydrobi(oxazoles) and 4,4′,5,5′-Tetrahydro-2,2′-methylenebis[oxazoles] as Chiral Ligands for Enantioselective Catalysis Preliminary Communication[J]. Helvetica Chimica Acta, 1991, 74(1): 232-240.
[30] Mashima K, Abe T, Tani K. Asymmetric Transfer Hydrogenation of Ketonic Substrates Catalyzed by (η5-C5Me5)MCl Complexes (M = Rh and Ir) of (1S,2S)-N-(p-Toluenesulfonyl)-1,2-diphenylethylenediamine[J]. Chemistry Letters, 1998, 27(12): 1199-1200.
[31] Murata K, Ikariya T, Noyori R. New Chiral Rhodium and Iridium Complexes with Chiral Diamine Ligands for Asymmetric Transfer Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 1999, 64(7): 2186-2187.
[32] Matharu D S, Morris D J, Kawamoto A M, et al. A stereochemically well-defined rhodium(III) catalyst for asymmetric transfer hydrogenation of ketones[J]. Organic Letters, 2005, 7(24): 5489-5491.
[33] Ma Y, Liu H, Chen L, et al. Asymmetric transfer hydrogenation of prochiral ketones in aqueous media with new water-soluble chiral vicinal diamine as ligand[J]. Organic Letters, 2003, 5(12): 2103-2106.
[34] Kang G, Lin S, Shiwakoti A, et al. Imidazolium ion tethered TsDPENs as efficient water-soluble ligands for rhodium catalyzed asymmetric transfer hydrogenation of aromatic ketones[J]. Catalysis Communications, 2014, 57(111-114.
[35] Cabre A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation[J]. Chem Rev, 2022, 122(1): 269-339.
[36] Xie J B, Xie J H, Liu X Y, et al. Chiral iridium spiro aminophosphine complexes: asymmetric hydrogenation of simple ketones, structure, and plausible mechanism[J]. Chemistry-An Asian Journal, 2011, 6(3): 899-908.
[37] Xie J H, Liu X Y, Xie J B, et al. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones[J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-7332.
[38] Liu W-P, Yuan M-L, Yang X-H, et al. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts[J]. Chemical Communications (Camb), 2015, 51(28): 6123-6125.
[39] Le Roux E, Malacea R, Manoury E, et al. Highly Efficient Asymmetric Hydrogenation of Alkyl Aryl Ketones Catalyzed by Iridium Complexes with Chiral Planar Ferrocenyl Phosphino-Thioether Ligands[J]. Advanced Synthesis & Catalysis, 2007, 349(3): 309-313.
[40] Wu W, Liu S, Duan M, et al. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones[J]. Organic Letters, 2016, 18(12): 2938-2941.
[41] Yu J, Long J, Yang Y, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands[J]. Organic Letters, 2017, 19(3): 690-693.
[42] Liang Z, Yang T, Gu G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.
[43] Ling F, Nian S, Chen J, et al. Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2018, 83(18): 10749-10761.
[44] Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes[J]. Chem Soc Rev, 2021, 50(5): 3211-3237.
[45] Sui-Seng C, Freutel F, Lough A J, et al. Highly efficient catalyst systems using iron complexes with a tetradentate PNNP ligand for the asymmetric hydrogenation of polar bonds[J]. Angewandte Chemie International Edition, 2008, 47(5): 940-943.
[46] Mikhailine A, Lough A J, Morris R H. Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P-N-N-P tetradentate ligand formed by template synthesis[J]. J Am Chem Soc, 2009, 131(4): 1394-1395.
[47] Morris R, Smith S. An Unsymmetrical Iron Catalyst for the Asymmetric Transfer Hydrogenation­ of Ketones[J]. Synthesis, 2015, 47(12): 1775-1779.
[48] Bigler R, Huber R, Mezzetti A. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2 P2 macrocyclic iron(II) complexes[J]. Angewandte Chemie International Edition, 2015, 54(17): 5171-5174.
[49] Lagaditis P O, Sues P E, Sonnenberg J F, et al. Iron(II) complexes containing unsymmetrical P-N-P' pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.
[50] Zirakzadeh A, de Aguiar S R M M, Stöger B, et al. Enantioselective Transfer Hydrogenation of Ketones Catalyzed by a Manganese Complex Containing an Unsymmetrical Chiral PNP′ Tridentate Ligand[J]. ChemCatChem, 2017, 9(10): 1744-1748.
[51] Widegren M B, Harkness G J, Slawin A M Z, et al. A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation[J]. Angewandte Chemie International Edition, 2017, 56(21): 5825-5828.
[52] Garbe M, Junge K, Walker S, et al. Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand[J]. Angewandte Chemie International Edition, 2017, 56(37): 11237-11241.
[53] Zhang L, Tang Y, Han Z, et al. Lutidine-Based Chiral Pincer Manganese Catalysts for Enantioselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2019, 58(15): 4973-4977.
[54] Ling F, Hou H, Chen J, et al. Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral PNN Tridentate Ligand[J]. Organic Letters, 2019, 21(11): 3937-3941.
[55] Zhang D, Zhu E-Z, Lin Z-W, et al. Enantioselective Hydrogenation of Ketones Catalyzed by Chiral Cobalt Complexes Containing PNNP Ligand[J]. Asian Journal of Organic Chemistry, 2016, 5(11): 1323-1326.
[56] Shimizu H, Igarashi D, Kuriyama W, et al. Asymmetric hydrogenation of aryl ketones mediated by a copper catalyst[J]. Organic Letters, 2007, 9(9): 1655-1657.
[57] Krabbe S W, Hatcher M A, Bowman R K, et al. Copper-catalyzed asymmetric hydrogenation of aryl and heteroaryl ketones[J]. Organic Letters, 2013, 15(17): 4560-4563.
[58] Junge K, Wendt B, Addis D, et al. Copper-catalyzed enantioselective hydrogenation of ketones[J]. Chemistry – A European Journal, 2011, 17(1): 101-105.
[59] Zatolochnaya O V, Rodriguez S, Zhang Y, et al. Copper-catalyzed asymmetric hydrogenation of 2-substituted ketones via dynamic kinetic resolution[J]. Chemical Science, 2018, 9(19): 4505-4510.
[60] Hamada Y, Koseki Y, Fujii T, et al. Catalytic asymmetric hydrogenation of alpha-amino-beta-keto ester hydrochlorides using homogeneous chiral nickel-bisphosphine complexes through DKR[J]. Chemical Communications (Camb), 2008, 6206-6208.
[61] Dong Z R, Li Y Y, Yu S L, et al. Asymmetric transfer hydrogenation of ketones catalyzed by nickel complex with new PNO-type ligands[J]. Chinese Chemical Letters, 2012, 23(5): 533-536.
[62] Wu W, You C, Yin C, et al. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium-f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(10): 2548-2551.
[63] Liu Y T, Chen J Q, Li L P, et al. Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters[J]. Organic Letters, 2017, 19(12): 3231-3234.
[64] Yin C, Dong X-Q, Zhang X. Iridium/f-Amphol-catalyzed Efficient Asymmetric Hydrogenation of Benzo-fused Cyclic Ketones[J]. Advanced Synthesis & Catalysis, 2018, 360(22): 4319-4324.
[65] Jeran M, Cotman A E, Stephan M, et al. Stereopure Functionalized Benzosultams via Ruthenium(II)-Catalyzed Dynamic Kinetic Resolution-Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2017, 19(8): 2042-2045.
[66] Liu C, Xie J H, Li Y L, et al. Asymmetric hydrogenation of alpha,alpha'-disubstituted cycloketones through dynamic kinetic resolution: an efficient construction of chiral diols with three contiguous stereocenters[J]. Angewandte Chemie International Edition, 2013, 52(2): 593-596.
[67] Seashore-Ludlow B, Villo P, Hacker C, et al. Enantioselective synthesis of anti-beta-hydroxy-alpha-amido esters via transfer hydrogenation[J]. Organic Letters, 2010, 12(22): 5274-5277.
[68] Bao D H, Gu X S, Xie J H, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Racemic beta-Keto Lactams via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(1): 118-121.
[69] Noyori R, Koizumi M, Ishii D, et al. Asymmetric hydrogenation via architectural and functional molecular engineering[J]. Pure and Applied Chemistry, 2001, 73(2): 227-232.
[70] Dub P A, Gordon J C. The mechanism of enantioselective ketone reduction with Noyori and Noyori-Ikariya bifunctional catalysts[J]. Dalton Translations, 2016, 45(16): 6756-6781.
[71] Noyori R, Hashiguchi S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes[J]. Accounts of Chemical Research, 1997, 30(2): 97-102.
[72] Haack K-J, Hashiguchi S, Fujii A, et al. The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones[J]. Angewandte Chemie International Edition in English, 1997, 36(3): 285-288.
[73] Casey C P, Johnson J B. Kinetic isotope effect evidence for a concerted hydrogen transfer mechanism in transfer hydrogenations catalyzed by [p-(Me2CH)C6H4Me]Ru- (NHCHPhCHPhNSO2C6H4-p-CH3)[J]. The Journal of Organic Chemistry, 2003, 68(5): 1998-2001.
[74] Sepkowitz K A. AIDS--the first 20 years[J]. The New England Journal of Medicine, 2001, 344(23): 1764-1772.
[75] Croom K F, Dhillon S, Keam S J. Atazanavir: a review of its use in the management of HIV-1 infection[J]. Drugs, 2009, 69(8): 1107-1140.
[76] de Miranda A S, Simon R C, Grischek B, et al. Chiral Chlorohydrins from the Biocatalyzed Reduction of Chloroketones: Chiral Building Blocks for Antiretroviral Drugs[J]. ChemCatChem, 2015, 7(6): 984-992.
[77] Barrish J C, Gordon E, Alam M, et al. Aminodiol HIV protease inhibitors. 1. Design, synthesis, and preliminary SAR[J]. Journal of Medicinal Chemistry, 1994, 37(12): 1758-1768.
[78] Izawa K, Onishi T. Industrial syntheses of the central core molecules of HIV protease inhibitors[J]. Chemical Reviews, 2006, 106(7): 2811-2827.
[79] Blacker A J, Roy M, Hariharan S, et al. Convenient Method for Synthesis ofN-Protected α-Amino Epoxides: Key Intermediates for HIV Protease Inhibitors[J]. Organic Process Research & Development, 2011, 15(2): 331-338.
[80] M A M S, Mandlekar S, Desikan S, et al. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir[J]. Journal of Medicinal Chemistry, 2019, 62(7): 3553-3574.
[81] Raghavan S, Krishnaiah V, Sridhar B. Asymmetric synthesis of the potent HIV-protease inhibitor, nelfinavir[J]. The Journal of Organic Chemistry, 2010, 75(2): 498-501.
[82] Flack K, Kitagawa K, Pollet P, et al. Al(OtBu)3 as an Effective Catalyst for the Enhancement of Meerwein–Ponndorf–Verley (MPV) Reductions[J]. Organic Process Research & Development, 2012, 16(7): 1301-1306.
[83] Hamada T, Torii T, Onishi T, et al. Asymmetric transfer hydrogenation of alpha-aminoalkyl alpha'-chloromethyl ketones with chiral Rh complexes[J]. The Journal of Organic Chemistry, 2004, 69(21): 7391-7394.
[84] Kacer P, Kuzma M, Leitmannova E, et al. Ruthenium complexes for asymmetric transfer hydrogenation, F, 2010 [C]. Nova Science Publishers, Inc.
[85] Houpis I N, Liu R, Liu L, et al. Synthesis of a Long Acting HIV Protease InhibitorviaMetal or Enzymatic Reduction of the Appropriate Chloro Ketone and Selective Zinc Enolate Condensation with an Amino Epoxide[J]. Advanced Synthesis & Catalysis, 2013, 355(9): 1829-1839.
[86] Seo C S G, Morris R H. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities[J]. Organometallics, 2019, 38(1): 47-65.
[87] Wu M, Cheng T, Ji M, et al. Ru-Catalyzed asymmetric transfer hydrogenation of alpha-trifluoromethylimines[J]. The Journal of Organic Chemistry, 2015, 80(7): 3708-3713.
[88] Zheng L S, Phansavath P, Ratovelomanana-Vidal V. Synthesis of Enantioenriched alpha,alpha-Dichloro- and alpha,alpha-Difluoro-beta-Hydroxy Esters and Amides by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2018, 20(17): 5107-5111.
[89] Steward K M, Corbett M T, Goodman C G, et al. Asymmetric synthesis of diverse glycolic acid scaffolds via dynamic kinetic resolution of alpha-keto esters[J]. Journal of the American Chemical Society, 2012, 134(49): 20197-20206.
[90] Steward K M, Gentry E C, Johnson J S. Dynamic kinetic resolution of alpha-keto esters via asymmetric transfer hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(17): 7329-7332.
[91] Corbett M T, Johnson J S. Diametric stereocontrol in dynamic catalytic reduction of racemic acyl phosphonates: divergence from alpha-keto ester congeners[J]. Journal of the American Chemical Society, 2013, 135(2): 594-597.
[92] Murphy S K, Dong V M. Enantioselective ketone hydroacylation using Noyori's transfer hydrogenation catalyst[J]. Journal of the American Chemical Society, 2013, 135(15): 5553-5556.
[93] Cheng T, Ye Q, Zhao Q, et al. Dynamic Kinetic Resolution of Phthalides via Asymmetric Transfer Hydrogenation: A Strategy Constructs 1,3-Distereocentered 3-(2-Hydroxy-2-arylethyl)isobenzofuran-1(3H)-one[J]. Organic Letters, 2015, 17(20): 4972-4975.
[94] Rong Z Q, Zhang Y, Chua R H, et al. Dynamic Kinetic Asymmetric Amination of Alcohols: From A Mixture of Four Isomers to Diastereo- and Enantiopure alpha-Branched Amines[J]. Journal of the American Chemical Society, 2015, 137(15): 4944-4947.
[95] Wang F, He W B, Wang J H, et al. Amino acid based chiral N-amidothioureas. Acetate anion binding induced chirality transfer[J]. Chemical Communications, 2011, 47(42): 11784-11746.
[96] Karnik A V, Kamath S S. Enantioselective benzoylation of alpha-amino esters using (S)-1-benzoyl-2- (alpha-acetoxyethyl)benzimidazole, a chiral benzimidazolide[J]. The Journal of Organic Chemistry, 2007, 72(19): 7435-7438.
[97] Kanda T, Naraoka A, Naka H. Catalytic Transfer Hydration of Cyanohydrins to α-Hydroxyamides[J]. Journal of the American Chemical Society, 2019, 141(2): 825-830.
[98] Bandyopadhyay A, Malik A, Kumar M G, et al. Exploring β-hydroxy γ-amino acids (statines) in the design of hybrid peptide foldamers[J]. Organic Letters, 2014, 16(1): 294-297.
[99] Zahrt A F, Athavale S V, Denmark S E. Quantitative Structure-Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future[J]. Chemical Reviews, 2020, 120(3): 1620-1689.
[100] Suto Y, Kumagai N, Matsunaga S, et al. Direct catalytic aldol-type reactions using RCH2CN[J]. Organic Letters, 2003, 5(17): 3147-3150.
[101] Goto A, Endo K, Ukai Y, et al. Rh(I)-catalyzed aldol-type reaction of organonitriles under mild conditions[J]. Chemical Communications, 2008, 2212-2214.
[102] Chakraborty S, Patel Y J, Krause J A, et al. A robust nickel catalyst for cyanomethylation of aldehydes: activation of acetonitrile under base-free conditions[J]. Angewandte Chemie International Edition, 2013, 52(29): 7523-7526.
[103] Zandbergen P, Brussee J, van der Gen A, et al. Stereoselective synthesis of β-hydroxy-α-amino acids from chiral cyanohydrins[J]. Tetrahedron: Asymmetry, 1992, 3(6): 769-774.
[104] Carlier P R, Lo K M, Lo M M C, et al. Anti-Selective Aldol Reaction of Benzylic Nitriles and Synthesis of .gamma.-Amino Alcohols[J]. The Journal of Organic Chemistry, 1995, 60(23): 7511-7517.
[105] Zhou J J P, Zhong B, Silverman R B. Improved Procedure for the Synthesis of Substituted β-Hydroxy Nitriles[J]. The Journal of Organic Chemistry, 1995, 60(7): 2261-2262.
[106] Carlier P R, Lo K M, Lo M M C, et al. Synthetic Optimization and Structural Limitations of the Nitrile Aldol Reaction[J]. The Journal of Organic Chemistry, 1997, 62(18): 6316-6321.
[107] Nishimura M, Minakata S, Takahashi T, et al. Asymmetric N1 unit transfer to olefins with a chiral nitridomanganese complex: novel stereoselective pathways to aziridines or oxazolines[J]. The Journal of Organic Chemistry, 2002, 67(7): 2101-2110.
[108] Rimoldi I, Facchetti G, Nava D, et al. Efficient methodology to produce a duloxetine precursor using whole cells of Rhodotorula rubra[J]. Tetrahedron: Asymmetry, 2016, 27(9-10): 389-396.
[109] Zerla D, Facchetti G, Fuse M, et al. 8-Amino-5,6,7,8-tetrahydroquinolines as ligands in iridium(III) catalysts for the reduction of aryl ketones by asymmetric transfer hydrogenation (ATH)[J]. Tetrahedron: Asymmetry, 2014, 25(13-14): 1031-1037.
[110] Noyori R, Ikeda T, Ohkuma T, et al. Stereoselective Hydrogenation Via Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 1989, 111(25): 9134-9135.
[111] Zhou Y, Jermaks J, Keresztes I, et al. Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism[J]. Journal of the American Chemical Society, 2019, 141(13): 5444-5460.
[112] Masaki M, Shinozaki H. A new class of potent centrally acting muscle relaxants: pharmacology of oxazolidinones in rat decerebrate rigidity[J]. British Journal of Pharmacology, 1986, 89(1): 219-228.
[113] Zhang G, Fang S, Jia Y, et al. Process for preparation of Tapentadol intermediate, CN106674029A [P/OL]. 2017.
[114] Kiyokawa K, Nagata T, Minakata S. Electrophilic Cyanation of Boron Enolates: Efficient Access to Various beta-Ketonitrile Derivatives[J]. Angewandte Chemie International Edition, 2016, 55(35): 10458-10462.
[115] Ji Y, Trenkle W C, Vowles J V. A high-yielding preparation of beta-ketonitriles[J]. Organic Letters, 2006, 8(6): 1161-1163.
[116] Johnson W S, Shelberg W E. A Plan for Distinguishing between Some Five- and Six-membered Ring Ketones[J]. Journal of the American Chemical Society, 1945, 67(10): 1745-1754.
[117] Nguyen H T, Kim H G, Yu N H, et al. In Vitro and In Vivo Antibacterial Activity of Serratamid, a Novel Peptide-Polyketide Antibiotic Isolated from Serratia plymuthica C1, against Phytopathogenic Bacteria[J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5471-5480.
[118] Ohashi M, Kakule T B, Tang M C, et al. Biosynthesis of para-Cyclophane-Containing Hirsutellone Family of Fungal Natural Products[J]. Journal of the American Chemical Society, 2021, 143(15): 5605-5609.
[119] Zhao Z, Yue J, Ji X, et al. Research progress in biological activities of succinimide derivatives[J]. Bioorg Chem, 2021, 108: 104557.
[120] Miller S J, Bayne C D. Diastereoselective Enolsilane Coupling Reactions[J]. The Journal of Organic Chemistry, 1997, 62(17): 5680-5681.
[121] Valeev R F, Bikzhanov R F, Miftakhov M S. Building blocks for (C15−C3)-modified epothilone D analogs[J]. Russian Journal of Organic Chemistry, 2014, 50(10): 1511-1519.
[122] Keshri P, Bettadapur K R, Lanke V, et al. Ru(II)-Catalyzed C-H Activation: Amide-Directed 1,4-Addition of the Ortho C-H Bond to Maleimides[J]. The Journal of Organic Chemistry, 2016, 81(14): 6056-6065.
[123] Han Z, Li P, Zhang Z, et al. Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation[J]. ACS Catalysis, 2016, 6(9): 6214-6218.
[124] Bhat V, Welin E R, Guo X, et al. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations[J]. Chemical Reviews, 2017, 117(5): 4528-4561.
[125] Vyas V K, Clarkson G J, Wills M. Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2021, 23(8): 3179-3183.
[126] Touge T, Nara H, Kida M, et al. Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic alpha-Halogenated Ketones through Dynamic Kinetic Resolution[J]. Organic Letters, 2021, 23(8): 3070-3075.
[127] Molina Betancourt R, Phansavath P, Ratovelomanana-Vidal V. Rhodium-Catalyzed Asymmetric Transfer Hydrogenation/Dynamic Kinetic Resolution of 3-Benzylidene-Chromanones[J]. Organic Letters, 2021, 23(5): 1621-1625.
[128] Luo Z, Sun G, Wu S, et al. η6‐Arene CH−O Interaction Directed Dynamic Kinetic Resolution–Asymmetric Transfer Hydrogenation (DKR‐ATH) of α‐Keto/enol‐Lactams[J]. Advanced Synthesis & Catalysis, 2021, 363(12): 3030-3034.
[129] He B, Phansavath P, Ratovelomanana-Vidal V. Kinetic resolution of 2-aryl-2,3-dihydroquinolin-4(1H)-one derivatives by rhodium-catalysed asymmetric transfer hydrogenation[J]. Org Chem Front, 2021, 8(11): 2504-2509.
[130] Cotman A E. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation[J]. Chemistry-A European Journal, 2021, 27(1): 39-53.
[131] Meng W-H, Wu T-J, Zhang H-K, et al. Asymmetric syntheses of protected (2S,3S,4S)-3-hydroxy-4-methylproline and 4′-tert-butoxyamido-2′-deoxythymidine[J]. Tetrahedron: Asymmetry, 2004, 15(24): 3899-3910.
[132] Lin G-J, Luo S-P, Zheng X, et al. Enantiodivergent synthesis of trans-3,4-disubstituted succinimides by SmI­2-mediated Reformatsky-type reaction[J]. Tetrahedron Letters, 2008, 49(25): 4007-4010.
[133] Dub P A, Tkachenko N V, Vyas V K, et al. Enantioselectivity in the Noyori–Ikariya Asymmetric Transfer Hydrogenation of Ketones[J]. Organometallics, 2021, 40(9): 1402-1410.
[134] Dub P A, Gordon J C. Metal–Ligand Bifunctional Catalysis: The “Accepted” Mechanism, the Issue of Concertedness, and the Function of the Ligand in Catalytic Cycles Involving Hydrogen Atoms[J]. ACS Catalysis, 2017, 7(10): 6635-6655.
[135] Pavlova A, Rösler E, Meijer E J. Mechanistic Aspects of Using Formate as a Hydrogen Donor in Aqueous Transfer Hydrogenation[J]. ACS Catalysis, 2016, 6(8): 5350-5358.
[136] Ombito J O, Singh G S. Recent Progress in Chemistry of β-Lactams[J]. Mini-Reviews in Organic Chemistry, 2019, 16(6): 544-567.
[137] Decuyper L, Jukic M, Sosic I, et al. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams[J]. Medicinal Research Reviews, 2018, 38(2): 426-503.
[138] Staudinger H. Ketenes. 1. Diphenylketene[J]. Justus Liebigs Annalen der Chemie, 1907, 356: 51-123.
[139] Lo M M C, Fu G C. Cu(I)/Bis(azaferrocene)-Catalyzed Enantioselective Synthesis of β-Lactams via Couplings of Alkynes with Nitrones[J]. Journal of the American Chemical Society, 2002, 124(17): 4572-4573.
[140] Tang W, Wang W, Chi Y, et al. A bisphosphepin ligand with stereogenic phosphorus centers for the practical synthesis of β-aryl-β-amino acids by asymmetric hydrogenation[J]. Angewandte Chemie International Edition, 2003, 42(30): 3509-3511.
[141] Lee E C, Hodous B L, Bergin E, et al. Catalytic Asymmetric Staudinger Reactions to Form β-Lactams: An Unanticipated Dependence of Diastereoselectivity on the Choice of the Nitrogen Substituent[J]. Journal of the American Chemical Society, 2005, 127(33): 11586-11587.
[142] He M, Bode J W. Enantioselective, NHC-Catalyzed Bicyclo-β-Lactam Formation via Direct Annulations of Enals and Unsaturated N-Sulfonyl Ketimines[J]. Journal of the American Chemical Society, 2008, 130(2): 418-419.
[143] Martin-Zamora E, Ferrete A, Llera J M, et al. Studies on stereoselective
[2+2] cycloadditions between N,N-dialkylhydrazones and ketenes[J]. Chemistry-A European Journal, 2004, 10(23): 6111-6129.
[144] Kayser M M, Yang Y, Mihovilovic M D, et al. Baker’s yeast-catalyzed synthesis of optically pure 4-tert-butyl-3-hydroxy beta-lactam cis-(3R,4S) and trans-(3R,4R) diastereomers[J]. Canadian Journal of Chemistry, 2002, 80(7): 796-800.
[145] Yang Y, Drolet M, Kayser M M. The dynamic kinetic resolution of 3-oxo-4-phenyl-β-lactam by recombinant E. coli overexpressing yeast reductase Ara1p[J]. Tetrahedron: Asymmetry, 2005, 16(16): 2748-2753.
[146] Pellissier H. Recent developments in dynamic kinetic resolution[J]. Tetrahedron, 2008, 64(8): 1563-1601.
[147] Chen G-Q, Lin B-J, Huang J-M, et al. Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann's Lactones with Molecular H2[J]. Journal of the American Chemical Society, 2018, 140(26): 8064-8068.
[148] Lou Y, Hu Y, Lu J, et al. Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams[J]. Angewandte Chemie International Edition, 2018, 57(43): 14193-14197.
[149] Zhang J, Wang J. Atropoenantioselective Redox-Neutral Amination of Biaryl Compounds through Borrowing Hydrogen and Dynamic Kinetic Resolution[J]. Angewandte Chemie International Edition, 2018, 57(2): 465-469.
[150] Zhao K, Duan L, Xu S, et al. Enhanced Reactivity by Torsional Strain of Cyclic Diaryliodonium in Cu-Catalyzed Enantioselective Ring-Opening Reaction[J]. Chem, 2018, 4(3): 599-612.
[151] Baumann T, Brueckner R. Atropselective Dibrominations of a 1,1'-Disubstituted 2,2'-Biindolyl with Diverging Point-to-Axial Asymmetric Inductions. Deriving 2,2'-Biindolyl-3,3'-diphosphane Ligands for Asymmetric Catalysis[J]. Angewandte Chemie International Edition, 2019, 58(14): 4714-4719.
[152] Chen K-Q, Gao Z-H, Ye S. (Dynamic) Kinetic Resolution of Enamines/Imines: Enantioselective N-Heterocyclic Carbene Catalyzed
[3+3] Annulation of Bromoenals and Enamines/Imines[J]. Angewandte Chemie International Edition, 2019, 58(4): 1183-1187.
[153] Fugard A J, Lahdenperae A S K, Tan J S J, et al. Hydrogen Bond-Enabled Dynamic Kinetic Resolution of Axially Chiral Amides Mediated by a Chiral Counterion[J]. Angewandte Chemie International Edition, 2019, 58(9): 2795-2798.
[154] Liu E-C, Topczewski J J. Enantioselective Copper Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 2019, 141(13): 5135-5138.
[155] Yang Q, Wang Y, Luo S, et al. Kinetic Resolution and Dynamic Kinetic Resolution of Chromene by Rhodium-Catalyzed Asymmetric Hydroarylation[J]. Angewandte Chemie International Edition, 2019, 58(16): 5343-5347.
[156] Ren J, Ban X, Zhang X, et al. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium-Catalyzed Phase-Transfer Azidation[J]. Angew Chem Int Ed Engl, 2020, 59(23): 9055-9058.
[157] Siegert M-A J, Knittel C H, Suessmuth R D. A convergent total synthesis of the death cap toxin α-Amanitin[J]. Angewandte Chemie International Edition, 2020, 59(14): 5500-5504.
[158] Vyas V K, Clarkson G J, Wills M. Sulfone Group as a Versatile and Removable Directing Group for Asymmetric Transfer Hydrogenation of Ketones[J]. Angew Chem Int Ed Engl, 2020, 59(34): 14265-14269.
[159] Yue W-J, Xiao J-Z, Zhang S, et al. Rapid Synthesis of Chiral 1,2-Bisphosphine Derivatives through Copper(I)-Catalyzed Asymmetric Conjugate Hydrophosphination[J]. Angewandte Chemie International Edition, 2020, 59(18): 7057-7062.
[160] Bin H-Y, Wang K, Yang D, et al. Scalable Enantioselective Total Synthesis of (-)-Goniomitine[J]. Angewandte Chemie International Edition, 2019, 58(4): 1174-1177.
[161] Chen Z, Aota Y, Nguyen H M H, et al. Dynamic Kinetic Resolution of Aldehydes by Hydroacylation[J]. Angewandte Chemie International Edition, 2019, 58(14): 4705-4709.
[162] Liu Y, Dong X-Q, Zhang X. Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1096-1104.
[163] Chen J, Zhang W. Efficient Synthesis of Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4372-4374.
[164] Hamada Y, Koseki Y, Fujii T, et al. Catalytic asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides using homogeneous chiral nickel-bisphosphine complexes through DKR[J]. Chemical Communications, 2008, 6206-6208.
[165] You C, Li X, Gong Q, et al. Nickel-Catalyzed Desymmetric Hydrogenation of Cyclohexadienones: An Efficient Approach to All-Carbon Quaternary Stereocenters[J]. Journal of the American Chemical Society, 2019, 141(37): 14560-14564.
[166] Li X, Zhao Z-B, Chen M-W, et al. Palladium-catalyzed asymmetric hydrogenation of 2-aryl cyclic ketones for the synthesis of trans cycloalkanols through dynamic kinetic resolution under acidic conditions[J]. Chemical Communications, 2020, 56(43): 5815-5818.
[167] Ojima I, Habus I, Zhao M, et al. Efficient and practical asymmetric synthesis of the taxol C-13 side chain, N-benzoyl-(2R,3S)-3-phenylisoserine, and its analogs via chiral 3-hydroxy-4-aryl-β-lactams through chiral ester enolate-imine cyclocondensation[J]. The Journal of Organic Chemistry, 1991, 56(5): 1681-1683.
[168] Davies S G, Hughes D G, Nicholson R L, et al. Asymmetric synthesis of (4R,5R)-cytoxazone and (4R,5S)-epi-cytoxazone[J]. Organic & Biomolecular Chemistry, 2004, 2(10): 1549-1553.

所在学位评定分委会
化学系
国内图书分类号
O623.736
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355653
专题理学院_化学系
推荐引用方式
GB/T 7714
王芳元. 铑、镍催化α-官能团化酮的不对称氢化反应研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849575-王芳元-化学系.pdf(13099KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王芳元]的文章
百度学术
百度学术中相似的文章
[王芳元]的文章
必应学术
必应学术中相似的文章
[王芳元]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。