[1] Akabori S, Sakurai S, Izumi Y, et al. An Asymmetric Catalyst[J]. Nature, 1956, 178(4528): 323-324.
[2] Osborn J A, Jardine F H, Young J F, et al. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, 1711-1732.
[3] Knowles W S, Sabacky M J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex[J]. Chemical Communications (London), 1968, 1445-1446.
[4] Horner L, Siegel H, Büthe H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution[J]. Angewandte Chemie International Edition, 1968, 7(12): 942-942.
[5] Knowles W S, Sabacky M J, Vineyard B D, et al. Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine[J]. Journal of the American Chemical Society, 1975, 97(9): 2567-2568.
[6] Noyori R, Ohkuma T, Kitamura M, et al. Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity[J]. Journal of the American Chemical Society, 1987, 109(19): 5856-5858.
[7] Meerwein H, Schmidt R. Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen[J]. Justus Liebig's Annalen der Chemie, 1925, 444(1): 221-238.
[8] Fujii A, Hashiguchi S, Uematsu N, et al. Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid−Triethylamine Mixture[J]. Journal of the American Chemical Society, 1996, 118(10): 2521-2522.
[9] Wang D, Astruc D. The golden age of transfer hydrogenation[J]. Chemical Reviews, 2015, 115(13): 6621-6686.
[10] Zhang X, Taketomi T, Yoshizumi T, et al. Asymmetric hydrogenation of cycloalkanones catalyzed by BINAP-iridium(I)-aminophosphine systems[J]. Journal of the American Chemical Society, 2002, 115(8): 3318-3319.
[11] Ohkuma T, Ooka H, Hashiguchi S, et al. Practical Enantioselective Hydrogenation of Aromatic Ketones[J]. Journal of the American Chemical Society, 1995, 117(9): 2675-2676.
[12] Xie J H, Wang L X, Fu Y, et al. Synthesis of spiro diphosphines and their application in asymmetric hydrogenation of ketones[J]. Journal of the American Chemical Society, 2003, 125(15): 4404-4405.
[13] Li W, Sun X, Zhou L, et al. Highly efficient and highly enantioselective asymmetric hydrogenation of ketones with TunesPhos/1,2-diamine-ruthenium(II) complexes[J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-1399.
[14] Jing Q, Zhang X, Sun J, et al. Bulky Achiral Triarylphosphines Mimic BINAP in Ru(II)- Catalyzed Asymmetric Hydrogenation of Ketones[J]. Advanced Synthesis & Catalysis, 2005, 347(9): 1193-1197.
[15] Genov D G, Ager D J. Asymmetric hydrogenation of ketones catalyzed by RuII-bicp complexes[J]. Angewandte Chemie International Edition, 2004, 43(21): 2816-2819.
[16] Arai N, Ooka H, Azuma K, et al. General asymmetric hydrogenation of alpha-branched aromatic ketones catalyzed by TolBINAP/DMAPEN-ruthenium(II) complex[J]. Organic Letters, 2007, 9(5): 939-941.
[17] Ohkuma T, Koizumi M, Muniz K, et al. trans-RuH(eta1-BH4)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions[J]. Journal of the American Chemical Society, 2002, 124(23): 6508-6509.
[18] Matsumura K, Arai N, Hori K, et al. Chiral ruthenabicyclic complexes: precatalysts for rapid, enantioselective, and wide-scope hydrogenation of ketones[J]. Journal of the American Chemical Society, 2011, 133(28): 10696-10699.
[19] Hashiguchi S, Fujii A, Takehara J, et al. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes[J]. Journal of the American Chemical Society, 2002, 117(28): 7562-7563.
[20] Hannedouche J, Clarkson G J, Wills M. A new class of "tethered" ruthenium(II) catalyst for asymmetric transfer hydrogenation reactions[J]. Journal of the American Chemical Society, 2004, 126(4): 986-987.
[21] Wakeham R J, Morris J A, Williams J M J. Alternative Hydrogen Source for Asymmetric Transfer Hydrogenation in the Reduction of Ketones[J]. ChemCatChem, 2015, 7(24): 4039-4041.
[22] Ito M, Endo Y, Ikariya T. Well-Defined Triflylamide-Tethered Arene−Ru(Tsdpen) Complexes for Catalytic Asymmetric Hydrogenation of Ketones[J]. Organometallics, 2008, 27(23): 6053-6055.
[23] Touge T, Hakamata T, Nara H, et al. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation[J]. Journal of the American Chemical Society, 2011, 133(38): 14960-14963.
[24] Takehara J, Hashiguchi S, Fujii A, et al. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol[J]. Chemical Communications, 1996, 233-234.
[25] Nordin S J M, Roth P, Tarnai T, et al. Remote Dipole Effects as a Means to Accelerate [Ru(amino alcohol)]-Catalyzed Transfer Hydrogenation of Ketones[J]. European Journal of Organic Chemistry 2001, 7(7): 1431-1436.
[26] Naud F, Malan C, Spindler F, et al. Ru-(Phosphine-Oxazoline) Complexes as Effective, Industrially Viable Catalysts for the Enantioselective Hydrogenation of Aryl Ketones[J]. Advanced Synthesis & Catalysis, 2006, 348(1-2): 47-50.
[27] Schuecker R, Zirakzadeh A, Mereiter K, et al. Synthesis, Coordination Behavior, and Structural Features of Chiral Amino-, Pyrazolyl-, and Phosphino-Substituted Ferrocenyloxazolines and Their Application in Asymmetric Hydrogenations[J]. Organometallics, 2011, 30(17): 4711-4719.
[28] Guo H, Liu D, Butt N A, et al. Efficient Ru(II)-catalyzed asymmetric hydrogenation of simple ketones with C2-symmetric planar chiral metallocenyl phosphinooxazoline ligands[J]. Tetrahedron, 2012, 68(16): 3295-3299.
[29] Müller D, Umbricht G, Weber B, et al. C2-Symmetric 4,4′,5,5′-Tetrahydrobi(oxazoles) and 4,4′,5,5′-Tetrahydro-2,2′-methylenebis[oxazoles] as Chiral Ligands for Enantioselective Catalysis Preliminary Communication[J]. Helvetica Chimica Acta, 1991, 74(1): 232-240.
[30] Mashima K, Abe T, Tani K. Asymmetric Transfer Hydrogenation of Ketonic Substrates Catalyzed by (η5-C5Me5)MCl Complexes (M = Rh and Ir) of (1S,2S)-N-(p-Toluenesulfonyl)-1,2-diphenylethylenediamine[J]. Chemistry Letters, 1998, 27(12): 1199-1200.
[31] Murata K, Ikariya T, Noyori R. New Chiral Rhodium and Iridium Complexes with Chiral Diamine Ligands for Asymmetric Transfer Hydrogenation of Aromatic Ketones[J]. The Journal of Organic Chemistry, 1999, 64(7): 2186-2187.
[32] Matharu D S, Morris D J, Kawamoto A M, et al. A stereochemically well-defined rhodium(III) catalyst for asymmetric transfer hydrogenation of ketones[J]. Organic Letters, 2005, 7(24): 5489-5491.
[33] Ma Y, Liu H, Chen L, et al. Asymmetric transfer hydrogenation of prochiral ketones in aqueous media with new water-soluble chiral vicinal diamine as ligand[J]. Organic Letters, 2003, 5(12): 2103-2106.
[34] Kang G, Lin S, Shiwakoti A, et al. Imidazolium ion tethered TsDPENs as efficient water-soluble ligands for rhodium catalyzed asymmetric transfer hydrogenation of aromatic ketones[J]. Catalysis Communications, 2014, 57(111-114.
[35] Cabre A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation[J]. Chem Rev, 2022, 122(1): 269-339.
[36] Xie J B, Xie J H, Liu X Y, et al. Chiral iridium spiro aminophosphine complexes: asymmetric hydrogenation of simple ketones, structure, and plausible mechanism[J]. Chemistry-An Asian Journal, 2011, 6(3): 899-908.
[37] Xie J H, Liu X Y, Xie J B, et al. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones[J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-7332.
[38] Liu W-P, Yuan M-L, Yang X-H, et al. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts[J]. Chemical Communications (Camb), 2015, 51(28): 6123-6125.
[39] Le Roux E, Malacea R, Manoury E, et al. Highly Efficient Asymmetric Hydrogenation of Alkyl Aryl Ketones Catalyzed by Iridium Complexes with Chiral Planar Ferrocenyl Phosphino-Thioether Ligands[J]. Advanced Synthesis & Catalysis, 2007, 349(3): 309-313.
[40] Wu W, Liu S, Duan M, et al. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones[J]. Organic Letters, 2016, 18(12): 2938-2941.
[41] Yu J, Long J, Yang Y, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands[J]. Organic Letters, 2017, 19(3): 690-693.
[42] Liang Z, Yang T, Gu G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.
[43] Ling F, Nian S, Chen J, et al. Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones[J]. The Journal of Organic Chemistry, 2018, 83(18): 10749-10761.
[44] Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes[J]. Chem Soc Rev, 2021, 50(5): 3211-3237.
[45] Sui-Seng C, Freutel F, Lough A J, et al. Highly efficient catalyst systems using iron complexes with a tetradentate PNNP ligand for the asymmetric hydrogenation of polar bonds[J]. Angewandte Chemie International Edition, 2008, 47(5): 940-943.
[46] Mikhailine A, Lough A J, Morris R H. Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P-N-N-P tetradentate ligand formed by template synthesis[J]. J Am Chem Soc, 2009, 131(4): 1394-1395.
[47] Morris R, Smith S. An Unsymmetrical Iron Catalyst for the Asymmetric Transfer Hydrogenation of Ketones[J]. Synthesis, 2015, 47(12): 1775-1779.
[48] Bigler R, Huber R, Mezzetti A. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2 P2 macrocyclic iron(II) complexes[J]. Angewandte Chemie International Edition, 2015, 54(17): 5171-5174.
[49] Lagaditis P O, Sues P E, Sonnenberg J F, et al. Iron(II) complexes containing unsymmetrical P-N-P' pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.
[50] Zirakzadeh A, de Aguiar S R M M, Stöger B, et al. Enantioselective Transfer Hydrogenation of Ketones Catalyzed by a Manganese Complex Containing an Unsymmetrical Chiral PNP′ Tridentate Ligand[J]. ChemCatChem, 2017, 9(10): 1744-1748.
[51] Widegren M B, Harkness G J, Slawin A M Z, et al. A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation[J]. Angewandte Chemie International Edition, 2017, 56(21): 5825-5828.
[52] Garbe M, Junge K, Walker S, et al. Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand[J]. Angewandte Chemie International Edition, 2017, 56(37): 11237-11241.
[53] Zhang L, Tang Y, Han Z, et al. Lutidine-Based Chiral Pincer Manganese Catalysts for Enantioselective Hydrogenation of Ketones[J]. Angewandte Chemie International Edition, 2019, 58(15): 4973-4977.
[54] Ling F, Hou H, Chen J, et al. Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral PNN Tridentate Ligand[J]. Organic Letters, 2019, 21(11): 3937-3941.
[55] Zhang D, Zhu E-Z, Lin Z-W, et al. Enantioselective Hydrogenation of Ketones Catalyzed by Chiral Cobalt Complexes Containing PNNP Ligand[J]. Asian Journal of Organic Chemistry, 2016, 5(11): 1323-1326.
[56] Shimizu H, Igarashi D, Kuriyama W, et al. Asymmetric hydrogenation of aryl ketones mediated by a copper catalyst[J]. Organic Letters, 2007, 9(9): 1655-1657.
[57] Krabbe S W, Hatcher M A, Bowman R K, et al. Copper-catalyzed asymmetric hydrogenation of aryl and heteroaryl ketones[J]. Organic Letters, 2013, 15(17): 4560-4563.
[58] Junge K, Wendt B, Addis D, et al. Copper-catalyzed enantioselective hydrogenation of ketones[J]. Chemistry – A European Journal, 2011, 17(1): 101-105.
[59] Zatolochnaya O V, Rodriguez S, Zhang Y, et al. Copper-catalyzed asymmetric hydrogenation of 2-substituted ketones via dynamic kinetic resolution[J]. Chemical Science, 2018, 9(19): 4505-4510.
[60] Hamada Y, Koseki Y, Fujii T, et al. Catalytic asymmetric hydrogenation of alpha-amino-beta-keto ester hydrochlorides using homogeneous chiral nickel-bisphosphine complexes through DKR[J]. Chemical Communications (Camb), 2008, 6206-6208.
[61] Dong Z R, Li Y Y, Yu S L, et al. Asymmetric transfer hydrogenation of ketones catalyzed by nickel complex with new PNO-type ligands[J]. Chinese Chemical Letters, 2012, 23(5): 533-536.
[62] Wu W, You C, Yin C, et al. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium-f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(10): 2548-2551.
[63] Liu Y T, Chen J Q, Li L P, et al. Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters[J]. Organic Letters, 2017, 19(12): 3231-3234.
[64] Yin C, Dong X-Q, Zhang X. Iridium/f-Amphol-catalyzed Efficient Asymmetric Hydrogenation of Benzo-fused Cyclic Ketones[J]. Advanced Synthesis & Catalysis, 2018, 360(22): 4319-4324.
[65] Jeran M, Cotman A E, Stephan M, et al. Stereopure Functionalized Benzosultams via Ruthenium(II)-Catalyzed Dynamic Kinetic Resolution-Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2017, 19(8): 2042-2045.
[66] Liu C, Xie J H, Li Y L, et al. Asymmetric hydrogenation of alpha,alpha'-disubstituted cycloketones through dynamic kinetic resolution: an efficient construction of chiral diols with three contiguous stereocenters[J]. Angewandte Chemie International Edition, 2013, 52(2): 593-596.
[67] Seashore-Ludlow B, Villo P, Hacker C, et al. Enantioselective synthesis of anti-beta-hydroxy-alpha-amido esters via transfer hydrogenation[J]. Organic Letters, 2010, 12(22): 5274-5277.
[68] Bao D H, Gu X S, Xie J H, et al. Iridium-Catalyzed Asymmetric Hydrogenation of Racemic beta-Keto Lactams via Dynamic Kinetic Resolution[J]. Organic Letters, 2017, 19(1): 118-121.
[69] Noyori R, Koizumi M, Ishii D, et al. Asymmetric hydrogenation via architectural and functional molecular engineering[J]. Pure and Applied Chemistry, 2001, 73(2): 227-232.
[70] Dub P A, Gordon J C. The mechanism of enantioselective ketone reduction with Noyori and Noyori-Ikariya bifunctional catalysts[J]. Dalton Translations, 2016, 45(16): 6756-6781.
[71] Noyori R, Hashiguchi S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes[J]. Accounts of Chemical Research, 1997, 30(2): 97-102.
[72] Haack K-J, Hashiguchi S, Fujii A, et al. The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones[J]. Angewandte Chemie International Edition in English, 1997, 36(3): 285-288.
[73] Casey C P, Johnson J B. Kinetic isotope effect evidence for a concerted hydrogen transfer mechanism in transfer hydrogenations catalyzed by [p-(Me2CH)C6H4Me]Ru- (NHCHPhCHPhNSO2C6H4-p-CH3)[J]. The Journal of Organic Chemistry, 2003, 68(5): 1998-2001.
[74] Sepkowitz K A. AIDS--the first 20 years[J]. The New England Journal of Medicine, 2001, 344(23): 1764-1772.
[75] Croom K F, Dhillon S, Keam S J. Atazanavir: a review of its use in the management of HIV-1 infection[J]. Drugs, 2009, 69(8): 1107-1140.
[76] de Miranda A S, Simon R C, Grischek B, et al. Chiral Chlorohydrins from the Biocatalyzed Reduction of Chloroketones: Chiral Building Blocks for Antiretroviral Drugs[J]. ChemCatChem, 2015, 7(6): 984-992.
[77] Barrish J C, Gordon E, Alam M, et al. Aminodiol HIV protease inhibitors. 1. Design, synthesis, and preliminary SAR[J]. Journal of Medicinal Chemistry, 1994, 37(12): 1758-1768.
[78] Izawa K, Onishi T. Industrial syntheses of the central core molecules of HIV protease inhibitors[J]. Chemical Reviews, 2006, 106(7): 2811-2827.
[79] Blacker A J, Roy M, Hariharan S, et al. Convenient Method for Synthesis ofN-Protected α-Amino Epoxides: Key Intermediates for HIV Protease Inhibitors[J]. Organic Process Research & Development, 2011, 15(2): 331-338.
[80] M A M S, Mandlekar S, Desikan S, et al. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir[J]. Journal of Medicinal Chemistry, 2019, 62(7): 3553-3574.
[81] Raghavan S, Krishnaiah V, Sridhar B. Asymmetric synthesis of the potent HIV-protease inhibitor, nelfinavir[J]. The Journal of Organic Chemistry, 2010, 75(2): 498-501.
[82] Flack K, Kitagawa K, Pollet P, et al. Al(OtBu)3 as an Effective Catalyst for the Enhancement of Meerwein–Ponndorf–Verley (MPV) Reductions[J]. Organic Process Research & Development, 2012, 16(7): 1301-1306.
[83] Hamada T, Torii T, Onishi T, et al. Asymmetric transfer hydrogenation of alpha-aminoalkyl alpha'-chloromethyl ketones with chiral Rh complexes[J]. The Journal of Organic Chemistry, 2004, 69(21): 7391-7394.
[84] Kacer P, Kuzma M, Leitmannova E, et al. Ruthenium complexes for asymmetric transfer hydrogenation, F, 2010 [C]. Nova Science Publishers, Inc.
[85] Houpis I N, Liu R, Liu L, et al. Synthesis of a Long Acting HIV Protease InhibitorviaMetal or Enzymatic Reduction of the Appropriate Chloro Ketone and Selective Zinc Enolate Condensation with an Amino Epoxide[J]. Advanced Synthesis & Catalysis, 2013, 355(9): 1829-1839.
[86] Seo C S G, Morris R H. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities[J]. Organometallics, 2019, 38(1): 47-65.
[87] Wu M, Cheng T, Ji M, et al. Ru-Catalyzed asymmetric transfer hydrogenation of alpha-trifluoromethylimines[J]. The Journal of Organic Chemistry, 2015, 80(7): 3708-3713.
[88] Zheng L S, Phansavath P, Ratovelomanana-Vidal V. Synthesis of Enantioenriched alpha,alpha-Dichloro- and alpha,alpha-Difluoro-beta-Hydroxy Esters and Amides by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2018, 20(17): 5107-5111.
[89] Steward K M, Corbett M T, Goodman C G, et al. Asymmetric synthesis of diverse glycolic acid scaffolds via dynamic kinetic resolution of alpha-keto esters[J]. Journal of the American Chemical Society, 2012, 134(49): 20197-20206.
[90] Steward K M, Gentry E C, Johnson J S. Dynamic kinetic resolution of alpha-keto esters via asymmetric transfer hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(17): 7329-7332.
[91] Corbett M T, Johnson J S. Diametric stereocontrol in dynamic catalytic reduction of racemic acyl phosphonates: divergence from alpha-keto ester congeners[J]. Journal of the American Chemical Society, 2013, 135(2): 594-597.
[92] Murphy S K, Dong V M. Enantioselective ketone hydroacylation using Noyori's transfer hydrogenation catalyst[J]. Journal of the American Chemical Society, 2013, 135(15): 5553-5556.
[93] Cheng T, Ye Q, Zhao Q, et al. Dynamic Kinetic Resolution of Phthalides via Asymmetric Transfer Hydrogenation: A Strategy Constructs 1,3-Distereocentered 3-(2-Hydroxy-2-arylethyl)isobenzofuran-1(3H)-one[J]. Organic Letters, 2015, 17(20): 4972-4975.
[94] Rong Z Q, Zhang Y, Chua R H, et al. Dynamic Kinetic Asymmetric Amination of Alcohols: From A Mixture of Four Isomers to Diastereo- and Enantiopure alpha-Branched Amines[J]. Journal of the American Chemical Society, 2015, 137(15): 4944-4947.
[95] Wang F, He W B, Wang J H, et al. Amino acid based chiral N-amidothioureas. Acetate anion binding induced chirality transfer[J]. Chemical Communications, 2011, 47(42): 11784-11746.
[96] Karnik A V, Kamath S S. Enantioselective benzoylation of alpha-amino esters using (S)-1-benzoyl-2- (alpha-acetoxyethyl)benzimidazole, a chiral benzimidazolide[J]. The Journal of Organic Chemistry, 2007, 72(19): 7435-7438.
[97] Kanda T, Naraoka A, Naka H. Catalytic Transfer Hydration of Cyanohydrins to α-Hydroxyamides[J]. Journal of the American Chemical Society, 2019, 141(2): 825-830.
[98] Bandyopadhyay A, Malik A, Kumar M G, et al. Exploring β-hydroxy γ-amino acids (statines) in the design of hybrid peptide foldamers[J]. Organic Letters, 2014, 16(1): 294-297.
[99] Zahrt A F, Athavale S V, Denmark S E. Quantitative Structure-Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future[J]. Chemical Reviews, 2020, 120(3): 1620-1689.
[100] Suto Y, Kumagai N, Matsunaga S, et al. Direct catalytic aldol-type reactions using RCH2CN[J]. Organic Letters, 2003, 5(17): 3147-3150.
[101] Goto A, Endo K, Ukai Y, et al. Rh(I)-catalyzed aldol-type reaction of organonitriles under mild conditions[J]. Chemical Communications, 2008, 2212-2214.
[102] Chakraborty S, Patel Y J, Krause J A, et al. A robust nickel catalyst for cyanomethylation of aldehydes: activation of acetonitrile under base-free conditions[J]. Angewandte Chemie International Edition, 2013, 52(29): 7523-7526.
[103] Zandbergen P, Brussee J, van der Gen A, et al. Stereoselective synthesis of β-hydroxy-α-amino acids from chiral cyanohydrins[J]. Tetrahedron: Asymmetry, 1992, 3(6): 769-774.
[104] Carlier P R, Lo K M, Lo M M C, et al. Anti-Selective Aldol Reaction of Benzylic Nitriles and Synthesis of .gamma.-Amino Alcohols[J]. The Journal of Organic Chemistry, 1995, 60(23): 7511-7517.
[105] Zhou J J P, Zhong B, Silverman R B. Improved Procedure for the Synthesis of Substituted β-Hydroxy Nitriles[J]. The Journal of Organic Chemistry, 1995, 60(7): 2261-2262.
[106] Carlier P R, Lo K M, Lo M M C, et al. Synthetic Optimization and Structural Limitations of the Nitrile Aldol Reaction[J]. The Journal of Organic Chemistry, 1997, 62(18): 6316-6321.
[107] Nishimura M, Minakata S, Takahashi T, et al. Asymmetric N1 unit transfer to olefins with a chiral nitridomanganese complex: novel stereoselective pathways to aziridines or oxazolines[J]. The Journal of Organic Chemistry, 2002, 67(7): 2101-2110.
[108] Rimoldi I, Facchetti G, Nava D, et al. Efficient methodology to produce a duloxetine precursor using whole cells of Rhodotorula rubra[J]. Tetrahedron: Asymmetry, 2016, 27(9-10): 389-396.
[109] Zerla D, Facchetti G, Fuse M, et al. 8-Amino-5,6,7,8-tetrahydroquinolines as ligands in iridium(III) catalysts for the reduction of aryl ketones by asymmetric transfer hydrogenation (ATH)[J]. Tetrahedron: Asymmetry, 2014, 25(13-14): 1031-1037.
[110] Noyori R, Ikeda T, Ohkuma T, et al. Stereoselective Hydrogenation Via Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 1989, 111(25): 9134-9135.
[111] Zhou Y, Jermaks J, Keresztes I, et al. Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism[J]. Journal of the American Chemical Society, 2019, 141(13): 5444-5460.
[112] Masaki M, Shinozaki H. A new class of potent centrally acting muscle relaxants: pharmacology of oxazolidinones in rat decerebrate rigidity[J]. British Journal of Pharmacology, 1986, 89(1): 219-228.
[113] Zhang G, Fang S, Jia Y, et al. Process for preparation of Tapentadol intermediate, CN106674029A [P/OL]. 2017.
[114] Kiyokawa K, Nagata T, Minakata S. Electrophilic Cyanation of Boron Enolates: Efficient Access to Various beta-Ketonitrile Derivatives[J]. Angewandte Chemie International Edition, 2016, 55(35): 10458-10462.
[115] Ji Y, Trenkle W C, Vowles J V. A high-yielding preparation of beta-ketonitriles[J]. Organic Letters, 2006, 8(6): 1161-1163.
[116] Johnson W S, Shelberg W E. A Plan for Distinguishing between Some Five- and Six-membered Ring Ketones[J]. Journal of the American Chemical Society, 1945, 67(10): 1745-1754.
[117] Nguyen H T, Kim H G, Yu N H, et al. In Vitro and In Vivo Antibacterial Activity of Serratamid, a Novel Peptide-Polyketide Antibiotic Isolated from Serratia plymuthica C1, against Phytopathogenic Bacteria[J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5471-5480.
[118] Ohashi M, Kakule T B, Tang M C, et al. Biosynthesis of para-Cyclophane-Containing Hirsutellone Family of Fungal Natural Products[J]. Journal of the American Chemical Society, 2021, 143(15): 5605-5609.
[119] Zhao Z, Yue J, Ji X, et al. Research progress in biological activities of succinimide derivatives[J]. Bioorg Chem, 2021, 108: 104557.
[120] Miller S J, Bayne C D. Diastereoselective Enolsilane Coupling Reactions[J]. The Journal of Organic Chemistry, 1997, 62(17): 5680-5681.
[121] Valeev R F, Bikzhanov R F, Miftakhov M S. Building blocks for (C15−C3)-modified epothilone D analogs[J]. Russian Journal of Organic Chemistry, 2014, 50(10): 1511-1519.
[122] Keshri P, Bettadapur K R, Lanke V, et al. Ru(II)-Catalyzed C-H Activation: Amide-Directed 1,4-Addition of the Ortho C-H Bond to Maleimides[J]. The Journal of Organic Chemistry, 2016, 81(14): 6056-6065.
[123] Han Z, Li P, Zhang Z, et al. Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation[J]. ACS Catalysis, 2016, 6(9): 6214-6218.
[124] Bhat V, Welin E R, Guo X, et al. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations[J]. Chemical Reviews, 2017, 117(5): 4528-4561.
[125] Vyas V K, Clarkson G J, Wills M. Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation[J]. Organic Letters, 2021, 23(8): 3179-3183.
[126] Touge T, Nara H, Kida M, et al. Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic alpha-Halogenated Ketones through Dynamic Kinetic Resolution[J]. Organic Letters, 2021, 23(8): 3070-3075.
[127] Molina Betancourt R, Phansavath P, Ratovelomanana-Vidal V. Rhodium-Catalyzed Asymmetric Transfer Hydrogenation/Dynamic Kinetic Resolution of 3-Benzylidene-Chromanones[J]. Organic Letters, 2021, 23(5): 1621-1625.
[128] Luo Z, Sun G, Wu S, et al. η6‐Arene CH−O Interaction Directed Dynamic Kinetic Resolution–Asymmetric Transfer Hydrogenation (DKR‐ATH) of α‐Keto/enol‐Lactams[J]. Advanced Synthesis & Catalysis, 2021, 363(12): 3030-3034.
[129] He B, Phansavath P, Ratovelomanana-Vidal V. Kinetic resolution of 2-aryl-2,3-dihydroquinolin-4(1H)-one derivatives by rhodium-catalysed asymmetric transfer hydrogenation[J]. Org Chem Front, 2021, 8(11): 2504-2509.
[130] Cotman A E. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation[J]. Chemistry-A European Journal, 2021, 27(1): 39-53.
[131] Meng W-H, Wu T-J, Zhang H-K, et al. Asymmetric syntheses of protected (2S,3S,4S)-3-hydroxy-4-methylproline and 4′-tert-butoxyamido-2′-deoxythymidine[J]. Tetrahedron: Asymmetry, 2004, 15(24): 3899-3910.
[132] Lin G-J, Luo S-P, Zheng X, et al. Enantiodivergent synthesis of trans-3,4-disubstituted succinimides by SmI2-mediated Reformatsky-type reaction[J]. Tetrahedron Letters, 2008, 49(25): 4007-4010.
[133] Dub P A, Tkachenko N V, Vyas V K, et al. Enantioselectivity in the Noyori–Ikariya Asymmetric Transfer Hydrogenation of Ketones[J]. Organometallics, 2021, 40(9): 1402-1410.
[134] Dub P A, Gordon J C. Metal–Ligand Bifunctional Catalysis: The “Accepted” Mechanism, the Issue of Concertedness, and the Function of the Ligand in Catalytic Cycles Involving Hydrogen Atoms[J]. ACS Catalysis, 2017, 7(10): 6635-6655.
[135] Pavlova A, Rösler E, Meijer E J. Mechanistic Aspects of Using Formate as a Hydrogen Donor in Aqueous Transfer Hydrogenation[J]. ACS Catalysis, 2016, 6(8): 5350-5358.
[136] Ombito J O, Singh G S. Recent Progress in Chemistry of β-Lactams[J]. Mini-Reviews in Organic Chemistry, 2019, 16(6): 544-567.
[137] Decuyper L, Jukic M, Sosic I, et al. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams[J]. Medicinal Research Reviews, 2018, 38(2): 426-503.
[138] Staudinger H. Ketenes. 1. Diphenylketene[J]. Justus Liebigs Annalen der Chemie, 1907, 356: 51-123.
[139] Lo M M C, Fu G C. Cu(I)/Bis(azaferrocene)-Catalyzed Enantioselective Synthesis of β-Lactams via Couplings of Alkynes with Nitrones[J]. Journal of the American Chemical Society, 2002, 124(17): 4572-4573.
[140] Tang W, Wang W, Chi Y, et al. A bisphosphepin ligand with stereogenic phosphorus centers for the practical synthesis of β-aryl-β-amino acids by asymmetric hydrogenation[J]. Angewandte Chemie International Edition, 2003, 42(30): 3509-3511.
[141] Lee E C, Hodous B L, Bergin E, et al. Catalytic Asymmetric Staudinger Reactions to Form β-Lactams: An Unanticipated Dependence of Diastereoselectivity on the Choice of the Nitrogen Substituent[J]. Journal of the American Chemical Society, 2005, 127(33): 11586-11587.
[142] He M, Bode J W. Enantioselective, NHC-Catalyzed Bicyclo-β-Lactam Formation via Direct Annulations of Enals and Unsaturated N-Sulfonyl Ketimines[J]. Journal of the American Chemical Society, 2008, 130(2): 418-419.
[143] Martin-Zamora E, Ferrete A, Llera J M, et al. Studies on stereoselective
[2+2] cycloadditions between N,N-dialkylhydrazones and ketenes[J]. Chemistry-A European Journal, 2004, 10(23): 6111-6129.
[144] Kayser M M, Yang Y, Mihovilovic M D, et al. Bakers yeast-catalyzed synthesis of optically pure 4-tert-butyl-3-hydroxy beta-lactam cis-(3R,4S) and trans-(3R,4R) diastereomers[J]. Canadian Journal of Chemistry, 2002, 80(7): 796-800.
[145] Yang Y, Drolet M, Kayser M M. The dynamic kinetic resolution of 3-oxo-4-phenyl-β-lactam by recombinant E. coli overexpressing yeast reductase Ara1p[J]. Tetrahedron: Asymmetry, 2005, 16(16): 2748-2753.
[146] Pellissier H. Recent developments in dynamic kinetic resolution[J]. Tetrahedron, 2008, 64(8): 1563-1601.
[147] Chen G-Q, Lin B-J, Huang J-M, et al. Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann's Lactones with Molecular H2[J]. Journal of the American Chemical Society, 2018, 140(26): 8064-8068.
[148] Lou Y, Hu Y, Lu J, et al. Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams[J]. Angewandte Chemie International Edition, 2018, 57(43): 14193-14197.
[149] Zhang J, Wang J. Atropoenantioselective Redox-Neutral Amination of Biaryl Compounds through Borrowing Hydrogen and Dynamic Kinetic Resolution[J]. Angewandte Chemie International Edition, 2018, 57(2): 465-469.
[150] Zhao K, Duan L, Xu S, et al. Enhanced Reactivity by Torsional Strain of Cyclic Diaryliodonium in Cu-Catalyzed Enantioselective Ring-Opening Reaction[J]. Chem, 2018, 4(3): 599-612.
[151] Baumann T, Brueckner R. Atropselective Dibrominations of a 1,1'-Disubstituted 2,2'-Biindolyl with Diverging Point-to-Axial Asymmetric Inductions. Deriving 2,2'-Biindolyl-3,3'-diphosphane Ligands for Asymmetric Catalysis[J]. Angewandte Chemie International Edition, 2019, 58(14): 4714-4719.
[152] Chen K-Q, Gao Z-H, Ye S. (Dynamic) Kinetic Resolution of Enamines/Imines: Enantioselective N-Heterocyclic Carbene Catalyzed
[3+3] Annulation of Bromoenals and Enamines/Imines[J]. Angewandte Chemie International Edition, 2019, 58(4): 1183-1187.
[153] Fugard A J, Lahdenperae A S K, Tan J S J, et al. Hydrogen Bond-Enabled Dynamic Kinetic Resolution of Axially Chiral Amides Mediated by a Chiral Counterion[J]. Angewandte Chemie International Edition, 2019, 58(9): 2795-2798.
[154] Liu E-C, Topczewski J J. Enantioselective Copper Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution[J]. Journal of the American Chemical Society, 2019, 141(13): 5135-5138.
[155] Yang Q, Wang Y, Luo S, et al. Kinetic Resolution and Dynamic Kinetic Resolution of Chromene by Rhodium-Catalyzed Asymmetric Hydroarylation[J]. Angewandte Chemie International Edition, 2019, 58(16): 5343-5347.
[156] Ren J, Ban X, Zhang X, et al. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium-Catalyzed Phase-Transfer Azidation[J]. Angew Chem Int Ed Engl, 2020, 59(23): 9055-9058.
[157] Siegert M-A J, Knittel C H, Suessmuth R D. A convergent total synthesis of the death cap toxin α-Amanitin[J]. Angewandte Chemie International Edition, 2020, 59(14): 5500-5504.
[158] Vyas V K, Clarkson G J, Wills M. Sulfone Group as a Versatile and Removable Directing Group for Asymmetric Transfer Hydrogenation of Ketones[J]. Angew Chem Int Ed Engl, 2020, 59(34): 14265-14269.
[159] Yue W-J, Xiao J-Z, Zhang S, et al. Rapid Synthesis of Chiral 1,2-Bisphosphine Derivatives through Copper(I)-Catalyzed Asymmetric Conjugate Hydrophosphination[J]. Angewandte Chemie International Edition, 2020, 59(18): 7057-7062.
[160] Bin H-Y, Wang K, Yang D, et al. Scalable Enantioselective Total Synthesis of (-)-Goniomitine[J]. Angewandte Chemie International Edition, 2019, 58(4): 1174-1177.
[161] Chen Z, Aota Y, Nguyen H M H, et al. Dynamic Kinetic Resolution of Aldehydes by Hydroacylation[J]. Angewandte Chemie International Edition, 2019, 58(14): 4705-4709.
[162] Liu Y, Dong X-Q, Zhang X. Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1096-1104.
[163] Chen J, Zhang W. Efficient Synthesis of Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4372-4374.
[164] Hamada Y, Koseki Y, Fujii T, et al. Catalytic asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides using homogeneous chiral nickel-bisphosphine complexes through DKR[J]. Chemical Communications, 2008, 6206-6208.
[165] You C, Li X, Gong Q, et al. Nickel-Catalyzed Desymmetric Hydrogenation of Cyclohexadienones: An Efficient Approach to All-Carbon Quaternary Stereocenters[J]. Journal of the American Chemical Society, 2019, 141(37): 14560-14564.
[166] Li X, Zhao Z-B, Chen M-W, et al. Palladium-catalyzed asymmetric hydrogenation of 2-aryl cyclic ketones for the synthesis of trans cycloalkanols through dynamic kinetic resolution under acidic conditions[J]. Chemical Communications, 2020, 56(43): 5815-5818.
[167] Ojima I, Habus I, Zhao M, et al. Efficient and practical asymmetric synthesis of the taxol C-13 side chain, N-benzoyl-(2R,3S)-3-phenylisoserine, and its analogs via chiral 3-hydroxy-4-aryl-β-lactams through chiral ester enolate-imine cyclocondensation[J]. The Journal of Organic Chemistry, 1991, 56(5): 1681-1683.
[168] Davies S G, Hughes D G, Nicholson R L, et al. Asymmetric synthesis of (4R,5R)-cytoxazone and (4R,5S)-epi-cytoxazone[J]. Organic & Biomolecular Chemistry, 2004, 2(10): 1549-1553.
修改评论