中文版 | English
题名

RSU1对MEK-ERK信号通路的调控作用及其机制研究

其他题名
STUDY OF THE ROLE AND MECHANISM OF RSU1 IN REGULATION OF THE MEK-ERK SIGNALING
姓名
姓名拼音
WANG Meiling
学号
11849489
学位类型
博士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
邓怿
导师单位
生物系
论文答辩日期
2022-05-13
论文提交日期
2022-07-11
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

细胞-细胞外基质(extracellular matrix,ECM)黏附是细胞辨别周围环境变化的重要途径,细胞通过细胞-基质黏附感知来自于细胞微环境的变化,特别是胞外基质的变化,进而通过胞内信号传导调整自身的形态、运动、生长、分裂、凋亡和分化等。细胞脱离细胞外基质可引起胞内信号传导的变化,进而抑制细胞增殖、激活细胞凋亡信号,并最终引起细胞“失巢凋亡”。细胞失巢凋亡是组织形成并行使正常功能的重要机制之一,而肿瘤细胞也由于具有抗失巢凋亡的能力而变得具有很强的侵袭性。

整合素(integrin)家族蛋白是细胞外基质的重要受体,在细胞与细胞外基质相互作用的过程中起着重要的连接作用。整合素受体与配体结合促进整合素的激活,其胞内结构域可以招募超过180种不同的胞内蛋白到其胞内临近细胞膜的位置,形成黏着斑(focal adhesion)。黏着斑是集结整合素-配体结合信号、诱发下游信号传导的胞内信号枢纽。 ILK是整合素信号传递的关键分子,可以和parvin、PINCH形成ILK-PINCH-parvin三元复合物(简称IPP复合物)。Ras 抑制蛋白1(Ras suppressor 1,RSU1)是进化上高度保守的黏着斑蛋白,通过与 PINCH1结合定位于黏着斑。

细胞脱离细胞外基质将引起一系列胞内信号如MEK-ERK信号通路的改变,然而相关的分子机制仍有待进一步阐明。本论文发现整合素信号关键分子RSU1的缺失增强了MEK/ERK的磷酸化水平,并且RSU1缺失后细胞的增殖也显著增加。另外,黏着斑蛋白RSU1的缺失也抑制了细胞的伸展、迁移和侵袭等细胞运动过程。本论文进一步的研究发现,RSU1参与负调节细胞脱离细胞外基质即细胞失巢时MEK-ERK信号通路的活性。当细胞失巢时,RSU1的缺失抑制了细胞失巢导致的MEK-ERK通路活性的下调。PHB2是RSU1的新的互作蛋白,PHB2定位于细胞膜的脂筏,并正调节Ras-Raf-MEK-ERK信号通路。本论文采用免疫共沉淀、pull-down、FRET等方法证明了RSU1与PHB2的相互作用,并且发现在细胞失巢时RSU1-PHB2互作增强。此外,与PHB2一样,RSU1也可以分布在细胞膜的脂筏,而且在细胞失巢时RSU1在脂筏的量有所增多,同时RSU1-PHB2的互作也增强。本论文还进一步研究了RSU1-PHB2互作,分别阐明了参与二者互作的各自的结构域。其中,PHB2的氨基酸(aa 150-206)片段与RSU1有较强的结合力,可以作为发挥显性抑制(dominant negative,DN)的片段抑制细胞内RSU1与全长PHB2互作,同时也抑制了“悬浮” 条件下培养细胞的MEK/ERK磷酸化水平的下调。这说明PHB2 DN片段与RSU1缺失一样,能够抑制因细胞脱离胞外基质而引起的MEK-ERK信号通路失活,这就进一步证明了RSU1-PHB2互作在细胞失巢时调节MEK-ERK信号通路。另外,过表达不和PHB2结合的RSU1-C末端片段则不能影响细胞失巢时对MEK-ERK信号通路活性的调节。由于RSU1通过与PINCH1互作而定位于黏着斑,PINCH1也能调控MEK-ERK信号通路,本论文发现RSU1在PINCH1调控MEK-ERK信号通路中发挥作用。此外,本论文还利用不和PINCH1结合的RSU1-Y140K突变体验证了RSU1-PHB2信号轴对MEK-ERK通路的调节不依赖于RSU1和PINCH1的互作。综上所述,本论文提出“RSU1-PHB2”信号轴调控细胞失巢时MEK-ERK信号通路的分子机制,并进一步在3D条件培养细胞中验证了这一机制,揭示了RSU1-PHB2信号轴对体内细胞MEK-ERK信号通路的调节作用。

本论文的研究全面论证了细胞-基质黏附调控MEK-ERK信号通路的“RSU1-PHB2 信号轴”分子机制,完善了对整合素信号通路调控癌细胞迁移和侵袭的认识,也为探索癌症研究和治疗提供了潜在的新思路和新靶点。

其他摘要

Cell-extracellular matrix (Cell-ECM) adhesion is crucial to tissue organization and cellular communication. Cells can perceive the environmental changes through cell-extracellular matrix interaction, which leads to changes of cell behavior such as cell morphology, cell migration, cell proliferation, cell division, cell differentiation, cell apoptosis and so on. It is known that Cell-ECM detachment induces alterations of many intracellular signaling pathways, which inhibit cell proliferation and activate apoptosis, resulting in cell death known as “anoikis”. Anoikis is critical to tissue homeostasis, and cancer cells can become more aggressive by gaining resistance to anoikis.

Integrin family proteins are critical ECM receptors on the cell membrane, and play key roles in mediating Cell-ECM interaction as well as sensing and transducing signals derived from ECM. Upon activation by binding to the ECM ligands, integrin recruits more than 180 intracellular proteins to the cell membrane through its intracellular domain. ILK, as a key signaling protein in integrin signaling, can form a ternary complex with parvin and PINCH known as IPP complex. Ras suppressor (RSU1) is another evolutionarily conserved focal adhesion.  It has been demonstrated that PINCH interacts with RSU1, which recruits RSU1 to focal adhesion.

How Cell-ECM detachment is linked to down-regulation of MEK-ERK signaling is however, incompletely understood. In this thesis, I found that RSU1-deficiency promotes MEK-ERK activation cell proliferation. Moreover, RSU1-deficiency inhibits cell spreading, cell migration and invasion. It was revealed that RSU1 is a negative regulatory factor of MEK-ERK signaling upon cell-ECM detachment. RSU1-deficiency inhibits cell-ECM detachment-induced decreases of MEK-ERK activation. Mechanistically, we have identified PHB2 as a new binding partner of RSU1, which regulates MEK-ERK activation positively on lipid rafts. Using co-immunoprecipitation, pull-down, and FRET assays, I have proved the interaction between RSU1 and PHB2. Interestingly, the RSU1-PHB2 interaction is enhanced upon cell-ECM detachment. It was also revealed that RSU1 is distributed on lipid rafts and the association of RSU1 with lipid rafts is increased upon cell-ECM detachment. In addition, I have mapped a major RSU1-binding site to PHB2 amino acids 150-206 in the C-terminal region of the PHB domain. This PHB2 (aa 150-206) fragment, which shows higher affinity to RSU1 than full-length PHB2 to RSU1, plays a dominant negative role by disrupting the interaction between RSU1 and PHB2. Overexpression of the PHB2 (aa 150-206) fragment, like RSU1-deficiency, inhibits the decreases of MEK-ERK activation induced by cell-ECM detachment, while overexpression of RSU1-C-term, which is unable to interact with PHB2, could not mediate MEK-ERK activation. Together, these results strengthen the role of RSU1-PHB2 interaction in regulating MEK-ERK activation. It is known that RSU1 is recruited to focal adhesion via interaction with PINCH1. PINCH1 is implicated in regulation of the MEK-ERK signaling. Therefore, the role of RSU1in PINCH1-mediated regulation of the MEK-ERK signaling pathway was also investigated. It was revealed that RSU1 is indeed involved in the suppression of PINCH1-mediated MEK-ERK activation. Moreover, using the RSU1-Y140K mutant, which is unable to interact with PINCH1, I have demonstrated that the MEK-ERK signaling mediated by RSU1-PHB2 axis is independent of RSU1-PINCH1 interaction. In conclusion, this thesis shows a mechanism of RSU1-PHB2 axis by which MEK-ERK activation is regulated, which is also supported by cells grown in 3D culture.

This thesis shows explicitly how RSU1-PHB2 axis regulated MEK-ERK activation, shedding light on our understanding of integrin signaling and cancer development and metastasis. This may also provide potential new therapeutic targets for cancer treatment.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] FRISCH S M, SCREATON R A. Anoikis mechanisms [J]. Current Opinion in Cell Biology, 2001, 13(5): 555-62.
[2] BUCHHEIT C L, WEIGEL K J, SCHAFER Z T. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression [J]. Nature Reviews Cancer, 2014, 14(9): 632-41.
[3] PAOLI P, GIANNONI E, CHIARUGI P. Anoikis molecular pathways and its role in cancer progression [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2013, 1833(12): 3481-98.
[4] CHIARUGI P, GIANNONI E. Anoikis: A necessary death program for anchorage-dependent cells [J]. Biochemical Pharmacology, 2008, 76(11): 1352-64.
[5] KIM Y-N, KOO K H, SUNG J Y, et al. Anoikis resistance: an essential prerequisite for tumor metastasis [J]. International journal of cell biology, 2012, 2012: 306879-.
[6] SIMPSON C D, ANYIWE K, SCHIMMER A D. Anoikis resistance and tumor metastasis [J]. Cancer Letters, 2008, 272(2): 177-85.
[7] SHARMA S V, BELL D W, SETTLEMAN J, et al. Epidermal growth factor receptor mutations in lung cancer [J]. Nature Reviews Cancer, 2007, 7(3): 169-81.
[8] REGINATO M J, MILLS K R, BECKER E B E, et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes [J]. Molecular and Cellular Biology, 2005, 25(11): 4591-601.
[9] BROWN M C, TURNER C E. Paxillin: Adapting to change [J]. Physiological Reviews, 2004, 84(4): 1315-39.
[10] MITRA S K, HANSON D A, SCHLAEPFER D D. Focal adhesion kinase: In command and control of cell motility [J]. Nature Reviews Molecular Cell Biology, 2005, 6(1): 56-68.
[11] GIANNONI E, BURICCHI F, GRIMALDI G, et al. Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival [J]. Cell Death and Differentiation, 2008, 15(5): 867-78.
[12] VAKALOGLOU K M, CHOUNTALA M, ZERVAS C G. Functional analysis of parvin and different modes of IPP-complex assembly at integrin sites during Drosophila development [J]. Journal of Cell Science, 2012, 125(13): 3221-32.
[13] WICKSTROM S A, LANGE A, MONTANEZ E, et al. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! [J]. Embo Journal, 2010, 29(2): 281-91.
[14] FUKUDA T, CHEN K, SHI X H, et al. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival [J]. Journal of Biological Chemistry, 2003, 278(51): 51324-33.
[15] HANNIGAN G, TROUSSARD A A, DEDHAR S. Integrin-linked kinase: A cancer therapeutic target unique among its ILK [J]. Nature Reviews Cancer, 2005, 5(1): 51-63.
[16] CUTLER M L, BASSIN R H, ZANONI L, et al. Isolation of rsp-1, a Novel cDNA Capable of Suppressing v-Ras Transformation [J]. Molecular and Cellular Biology, 1992, 12(9): 3750-6.
[17] KADRMAS J L, SMITH M A, CLARK K A, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1 [J]. Journal of Cell Biology, 2004, 167(6): 1019-24.
[18] DOUGHERTY G W, CHOPP T, QI S, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions [J]. Experimental Cell Research, 2005, 306(1): 168-79.
[19] DOUGHERTY G W, JOSE C, GIMONA M, et al. The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells [J]. European Journal of Cell Biology, 2008, 87(8-9): 721-34.
[20] KIM Y C, CUTLER M L. MicroRNA-Dependent Targeting of RSU1 and the IPP Adhesion Complex Regulates the PTEN/PI3K/AKT Signaling Pathway in Breast Cancer Cell Lines [J]. International Journal of Molecular Sciences, 2020, 21(15).
[21] GONZALEZ-NIEVES R, DESANTIS A I, CUTLER M L. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms [J]. Journal of Cell Communication and Signaling, 2013, 7(4): 279-93.
[22] KADRMAS J L, PRONOVOST S M, BECKERLE M C, et al. Ras Suppressor 1 (RSU1) regulates both integrin adhesion and PDGF Receptor profile to integrate cell morphology with Ras-dependent signaling in fibroblasts and melanoma cells [J]. Molecular Biology of the Cell, 2018, 29(26).
[23] KIM Y-C, GONZALEZ-NIEVES R, CUTLER M L. Rsu1 contributes to cell adhesion and spreading in MCF10A cells via effects on P38 map kinase signaling [J]. Cell Adhesion & Migration, 2015, 9(3): 227-32.
[24] LOUCA M, STYLIANOU A, MINIA A, et al. Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation [J]. Scientific Reports, 2019, 9.
[25] KIM Y-C, GONZALEZ-NIEVES R, CUTLER M L. Rsu1-dependent control of PTEN expression is regulated via ATF2 and cJun [J]. Journal of Cell Communication and Signaling, 2019, 13(3): 331-41.
[26] NIKOU S, ARBI M, DIMITRAKOPOULOS F-I D, et al. Integrin-linked kinase (ILK) regulates KRAS, IPP complex and Ras suppressor-1 (RSU1) promoting lung adenocarcinoma progression and poor survival [J]. Journal of Molecular Histology, 2020, 51(4): 385-400.
[27] LOUCA M, STYLIANOPOULOS T, GKRETSI V. Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor [J]. International Journal of Molecular Sciences, 2020, 21(11).
[28] ZACHARIA L C, STYLIANOPOULOS T, GKRETSI V. Ras Suppressor-1 (RSU-1) in Cancer Cell Metastasis: Friend or Foe? [J]. Critical reviews in oncogenesis, 2017, 22(3-4): 249-53.
[29] MAKRILIA N, KOLLIAS A, MANOLOPOULOS L, et al. Cell Adhesion Molecules: Role and Clinical Significance in Cancer [J]. Cancer Investigation, 2009, 27(10): 1023-37.
[30] MOH M C, SHEN S. The roles of cell adhesion molecules in tumor suppression and cell migration A new paradox [J]. Cell Adhesion & Migration, 2009, 3(4): 334-6.
[31] MUI K L, CHEN C S, ASSOIAN R K. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces [J]. Journal of Cell Science, 2016, 129(6): 1093-100.
[32] FREEMONT A J, HOYLAND J A. Cell adhesion molecules [J]. Journal of Clinical Pathology-Clinical Molecular Pathology Edition, 1996, 49(6): M321-M30.
[33] WINDISCH R, PIRSCHTAT N, KELLNER C, et al. Oncogenic Deregulation of Cell Adhesion Molecules in Leukemia [J]. Cancers, 2019, 11(3).
[34] TADDEI M L, GIANNONI E, FIASCHI T, et al. Anoikis: an emerging hallmark in health and diseases [J]. Journal of Pathology, 2012, 226(2): 380-93.
[35] CARNEIRO B R, PERNAMBUCO FILHO P C A, DE SOUSA MESQUITA A P, et al. Acquisition of Anoikis Resistance Up-Regulates Syndecan-4 Expression in Endothelial Cells [J]. Plos One, 2014, 9(12).
[36] REISS K, D'AMBROSIO C, TU X, et al. Inhibition of tumor growth by a dominant negative mutant of the insulin-like growth factor I receptor with a bystander effect [J]. Clinical Cancer Research, 1998, 4(11): 2647-55.
[37] RESNICOFF M, COPPOLA D, SELL C, et al. Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor [J]. Cancer Research, 1994, 54(18): 4848-50.
[38] DEBNATH J, MILLS K R, COLLINS N L, et al. The role of apoptosis in creating and maintaining luminal space with normal and oncogene-expressing mammary acini [J]. Cell, 2002, 111(1): 29-40.
[39] REGINATO M J, MILLS K R, PAULUS J K, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis [J]. Nature Cell Biology, 2003, 5(8): 733-40.
[40] GRASSIAN A R, SCHAFER Z T, BRUGGE J S. ErbB2 Stabilizes Epidermal Growth Factor Receptor (EGFR) Expression via Erk and Sprouty2 in Extracellular Matrix-detached Cells [J]. Journal of Biological Chemistry, 2011, 286(1): 79-90.
[41] HAENSSEN K K, CALDWELL S A, SHAHRIARI K S, et al. ErbB2 requires integrin alpha 5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells [J]. Journal of Cell Science, 2010, 123(8): 1373-82.
[42] FUKAZAWA H, NOGUCHI K, MASUMI A, et al. BimEL is an important determinant for induction of anoikis sensitivity by mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitors [J]. Molecular Cancer Therapeutics, 2004, 3(10): 1281-8.
[43] SCHMELZLE T, MAILLEUX A A, OVERHOLTZER M, et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3787-92.
[44] LUO B-H, CARMAN C V, SPRINGER T A. Structural basis of integrin regulation and signaling [J]. Annual Review of Immunology, 2007, 25: 619-47.
[45] BAKER E L, ZAMAN M H. The biomechanical integrin [J]. Journal of Biomechanics, 2010, 43(1): 38-44.
[46] LAFLAMME S E, AUER K L. Integrin signaling [J]. Seminars in Cancer Biology, 1996, 7(3): 111-8.
[47] SHIMAOKA M. Structural basis of integrin activation and integrin-targeted therapeutics [J]. Journal of Physiological Sciences, 2013, 63: S43-S.
[48] HYNES R O. Integrins: Bidirectional, allosteric signaling machines [J]. Cell, 2002, 110(6): 673-87.
[49] CALDERWOOD D A, CAMPBELL I D, CRITCHLEY D R. Talins and kindlins: partners in integrin-mediated adhesion [J]. Nature Reviews Molecular Cell Biology, 2013, 14(8): 503-17.
[50] KANCHANAWONG P, SHTENGEL G, PASAPERA A M, et al. Nanoscale architecture of integrin-based cell adhesions [J]. Nature, 2010, 468(7323): 580-U262.
[51] YOSHIGI M, HOFFMAN L M, JENSEN C C, et al. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement [J]. Journal of Cell Biology, 2005, 171(2): 209-15.
[52] SCHILLER H B, FAESSLER R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions [J]. Embo Reports, 2013, 14(6): 509-19.
[53] KECHAGIA J Z, IVASKA J, ROCA-CUSACHS P. Integrins as biomechanical sensors of the microenvironment [J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 457-73.
[54] SHATTIL S J, KIM C, GINSBERG M H. The final steps of integrin activation: the end game [J]. Nature Reviews Molecular Cell Biology, 2010, 11(4): 288-300.
[55] TADOKORO S, SHATTIL S J, ETO K, et al. Talin binding to integrin beta tails: A final common step in integrin activation [J]. Science, 2003, 302(5642): 103-6.
[56] WU C Y, KEIVENS V M, OTOOLE T E, et al. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix [J]. Cell, 1995, 83(5): 715-24.
[57] LAUKAITIS C M, WEBB D J, DONAIS K, et al. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells [J]. Journal of Cell Biology, 2001, 153(7): 1427-40.
[58] WEBB D J, DONAIS K, WHITMORE L A, et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly [J]. Nature Cell Biology, 2004, 6(2): 154-+.
[59] WISEMAN P W, BROWN C M, WEBB D J, et al. Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy [J]. Journal of Cell Science, 2004, 117(23): 5521-34.
[60] REN X D, KIOSSES W B, SIEG D J, et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover [J]. Journal of Cell Science, 2000, 113(20): 3673-8.
[61] ZAIDEL-BAR R, MILO R, KAM Z, et al. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions [J]. Journal of Cell Science, 2007, 120(1): 137-48.
[62] GUPTON S L, WATERMAN-STORER C M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration [J]. Cell, 2006, 125(7): 1361-74.
[63] LEGERSTEE K, GEVERTS B, SLOTMAN J A, et al. Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation [J]. Scientific Reports, 2019, 9.
[64] GALBRAITH C G, YAMADA K M, SHEETZ M P. The relationship between force and focal complex development [J]. Journal of Cell Biology, 2002, 159(4): 695-705.
[65] BROWN C M, HEBERT B, KOLIN D L, et al. Probing the integrin-actin linkage using high-resolution protein velocity mapping [J]. Journal of Cell Science, 2006, 119(24): 5204-14.
[66] HU K, JI L, APPLEGATE K T, et al. Differential transmission of actin motion within focal adhesions [J]. Science, 2007, 315(5808): 111-5.
[67] JIANG G Y, GIANNONE G, CRITCHLEY D R, et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin [J]. Nature, 2003, 424(6946): 334-7.
[68] FORNARO M, MANES T, LANGUINO L R. Integrins and prostate cancer metastases [J]. Cancer and Metastasis Reviews, 2001, 20(3-4): 321-31.
[69] NIKOLOPOULOS S N, BLAIKIE P, YOSHIOKA T, et al. Integrin beta 4 signaling promotes tumor angiogenesis [J]. Cancer Cell, 2004, 6(5): 471-83.
[70] GOEL H L, LI J, KOGAN S, et al. Integrins in prostate cancer progression [J]. Endocrine-Related Cancer, 2008, 15(3): 657-64.
[71] LEE Y-C, JIN J-K, CHENG C-J, et al. Targeting Constitutively Activated beta(1) Integrins Inhibits Prostate Cancer Metastasis [J]. Molecular Cancer Research, 2013, 11(4): 405-17.
[72] DUXBURY M S, ITO H, BENOIT E, et al. A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells [J]. Cancer Research, 2004, 64(11): 3987-93.
[73] GIANNONI E, FIASCHI T, RAMPONI G, et al. Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals [J]. Oncogene, 2009, 28(20): 2074-86.
[74] GRAFF J R, DEDDENS J A, KONICEK B W, et al. Integrin-linked kinase expression increases with prostate tumor grade [J]. Clinical Cancer Research, 2001, 7(7): 1987-91.
[75] WU C Y, DEDHAR S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes [J]. Journal of Cell Biology, 2001, 155(4): 505-10.
[76] CIESLIK K, ZEMBOWICZ A, TANG J L, et al. Transcriptional regulation of endothelial nitric-oxide synthase by lysophosphatidylcholine [J]. Journal of Biological Chemistry, 1998, 273(24): 14885-90.
[77] LYNCH D K, ELLIS C A, EDWARDS P A W, et al. Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism [J]. Oncogene, 1999, 18(56): 8024-32.
[78] GHATAK S, MORGNER J, WICKSTROEM S A. ILK: a pseudokinase with a unique function in the integrin-actin linkage [J]. Biochemical Society Transactions, 2013, 41: 995-1001.
[79] ROONEY N, STREULI C H. How integrins control mammary epithelial differentiation: A possible role for the ILK-PINCH-Parvin complex [J]. Febs Letters, 2011, 585(11): 1663-72.
[80] ITO S, TAKAHARA Y, HYODO T, et al. The Roles of Two Distinct Regions of PINCH-1 in the Regulation of Cell Attachment and Spreading [J]. Molecular Biology of the Cell, 2010, 21(23): 4120-9.
[81] TU Y Z, LI F G, GOICOECHEA S, et al. The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells [J]. Molecular and Cellular Biology, 1999, 19(3): 2425-34.
[82] GREEN H J, BROWN N H. Integrin intracellular machinery in action [J]. Experimental Cell Research, 2019, 378(2): 226-31.
[83] TSUDA T, MARINETTI M R, MASUELLI L, et al. The ras suppressor rsu-1 localizes to 10p13 and its expression in the u251 glioblastoma cell-line correlates with a decrease in growth-rate and tumorigenic potential [J]. Oncogene, 1995, 11(2): 397-403.
[84] KAJAVA A V. Structural diversity of leucine-rich repeat proteins [J]. Journal of Molecular Biology, 1998, 277(3): 519-27.
[85] KAJAVA A V, KOBE B. Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information [J]. Protein Science, 2002, 11(5): 1082-90.
[86] VASATURO F, DOUGHERTY G W, CUTLER M L. Ectopic expression of Rsu-1 results in elevation of p21(CIP) and inhibits anchorage-independent growth of MCF7 breast cancer cells [J]. Breast Cancer Research and Treatment, 2000, 61(1): 69-78.
[87] LI F G, ZHANG Y J, WU C Y. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding AMK repeats [J]. Journal of Cell Science, 1999, 112(24): 4589-99.
[88] REARDEN A. A new lim protein containing an autoepitope homologous to senescent-cell-antigen [J]. Biochemical and Biophysical Research Communications, 1994, 201(3): 1124-31.
[89] TU Y Z, HUANG Y, ZHANG Y J, et al. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading [J]. Journal of Cell Biology, 2001, 153(3): 585-98.
[90] MONTANEZ E, KARAKOESE E, TISCHNER D, et al. PINCH-1 promotes Bcl-2-dependent survival signalling and inhibits JNK-mediated apoptosis in the primitive endoderm [J]. Journal of Cell Science, 2012, 125(21): 5233-40.
[91] ELIAS M C, PRONOVOST S M, CAHILL K J, et al. A crucial role for Ras suppressor-1 (RSU-1) revealed when PINCH and ILK binding is disrupted [J]. Journal of Cell Science, 2012, 125(13): 3185-94.
[92] CHUNDURU S, KAWAMI H, GULLICK R, et al. Identification of an alternatively spliced RNA for the Ras suppressor RSU-1 in human gliomas [J]. Journal of Neuro-Oncology, 2002, 60(3): 201-11.
[93] GKRETSI V, KALLI M, EFSTATHIADES C, et al. Depletion of Ras Suppressor-1 (RSU-1) promotes cell invasion of breast cancer cells through a compensatory upregulation of a truncated isoform [J]. Scientific Reports, 2019, 9.
[94] MASUELLI L, ETTENBERG S, VASATURO F, et al. The Ras suppressor, RSU-1, enhances nerve growth factor-induced differentiation of PC12 cells and induces p21(CIP) expression [J]. Cell Growth & Differentiation, 1999, 10(8): 555-64.
[95] GKRETSI V, STYLIANOU A, LOUCA M, et al. Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional in vitro approach [J]. Oncotarget, 2017, 8(16): 27364-79.
[96] RAJALINGAM K, SCHRECK R, RAPP U R, et al. Ras oncogenes and their downstream targets [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2007, 1773(8): 1177-95.
[97] LAVOIE H, THERRIEN M. Regulation of RAF protein kinases in ERK signalling [J]. Nature Reviews Molecular Cell Biology, 2015, 16(5): 281-98.
[98] DOWNWARD J. Targeting ras signalling pathways in cancer therapy [J]. Nature Reviews Cancer, 2003, 3(1): 11-22.
[99] DEGIRMENCI U, WANG M, HU J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy [J]. Cells, 2020, 9(1).
[100] HOBBS G A, DER C J, ROSSMAN K L. RAS isoforms and mutations in cancer at a glance [J]. Journal of Cell Science, 2016, 129(7): 1287-92.
[101] CSEH B, DOMA E, BACCARINI M. "RAF" neighborhood: Protein-protein interaction in the Raf/Mek/Erk pathway [J]. Febs Letters, 2014, 588(15): 2398-406.
[102] NIAULT T S, BACCARINI M. Targets of Raf in tumorigenesis [J]. Carcinogenesis, 2010, 31(7): 1165-74.
[103] WORTZEL I, SEGER R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles [J]. Genes & cancer, 2011, 2(3): 195-209.
[104] MCCLUNG J K, DANNER D B, STEWART D A, et al. Isolation of a cDNA that hybrid selects antiproliferative messenger-RNA from rat-liver [J]. Biochemical and Biophysical Research Communications, 1989, 164(3): 1316-22.
[105] MISHRA S, MURPHY L C, NYOMBA B L G, et al. Prohibitin: a potential target for new therapeutics [J]. Trends in Molecular Medicine, 2005, 11(4): 192-7.
[106] MISHRA S, MURPHY L C, MURPHY L J. The prohibitins: emerging roles in diverse functions [J]. Journal of Cellular and Molecular Medicine, 2006, 10(2): 353-63.
[107] THEISS A L, SITARAMAN S V. The role and therapeutic potential of prohibitin in disease [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2011, 1813(6): 1137-43.
[108] BAVELLONI A, PIAZZI M, RAFFINI M, et al. Prohibitin 2: At a communications crossroads [J]. Iubmb Life, 2015, 67(4): 239-54.
[109] EWING R M, CHU P, ELISMA F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry [J]. Molecular Systems Biology, 2007, 3.
[110] HAVUGIMANA P C, HART G T, NEPUSZ T, et al. A Census of Human Soluble Protein Complexes [J]. Cell, 2012, 150(5): 1068-81.
[111] KURTEV V, MARGUERON R, KROBOTH K, et al. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases [J]. Journal of Biological Chemistry, 2004, 279(23): 24834-43.
[112] LAU E, KLUGER H, VARSANO T, et al. PKC epsilon Promotes Oncogenic Functions of ATF2 in the Nucleus while Blocking Its Apoptotic Function at Mitochondria [J]. Cell, 2012, 148(3): 543-55.
[113] MARTINI P G V, DELAGE-MOURROUX R, KRAICHELY D M, et al. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity [J]. Molecular and Cellular Biology, 2000, 20(17): 6224-32.
[114] SUN L G, LIU L Y, YANG X J, et al. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation [J]. Journal of Cell Science, 2004, 117(14): 3021-9.
[115] KASASHIMA K, OHTA E, KAGAWA Y, et al. Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2 [J]. Journal of Biological Chemistry, 2006, 281(47): 36401-10.
[116] KIM J W, AKIYAMA M, PARK J H, et al. Activation of an estrogen/estrogen receptor signaling by BIG3 through its inhibitory effect on nuclear transport of PHB2/REA in breast cancer [J]. Cancer Science, 2009, 100(8): 1468-78.
[117] OSMAN C, MERKWIRTH C, LANGER T. Prohibitins and the functional compartmentalization of mitochondrial membranes [J]. Journal of Cell Science, 2009, 122(21): 3823-30.
[118] THUAUD F, RIBEIRO N, NEBIGIL C G, et al. Prohibitin Ligands in Cell Death and Survival: Mode of Action and Therapeutic Potential [J]. Chemistry & Biology, 2013, 20(3): 316-31.
[119] BURTE F, CARELLI V, CHINNERY P F, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders [J]. Nature Reviews Neurology, 2015, 11(1): 11-24.
[120] KASAHARA A, SCORRANO L. Mitochondria: from cell death executioners to regulators of cell differentiation [J]. Trends in Cell Biology, 2014, 24(12): 761-70.
[121] MONTGOMERY M K, TURNER N. Mitochondrial dysfunction and insulin resistance: an update [J]. Endocrine Connections, 2015, 4(1).
[122] SCHEIBYE-KNUDSEN M, FANG E F, CROTEAU D L, et al. Protecting the mitochondrial powerhouse [J]. Trends in Cell Biology, 2015, 25(3): 158-70.
[123] RICHTER-DENNERLEIN R, KORWITZ A, HAAG M, et al. DNAJC19, a Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a Complex with Prohibitins to Regulate Cardiolipin Remodeling [J]. Cell Metabolism, 2014, 20(1): 158-71.
[124] STEGLICH G, NEUPERT W, LANGER T. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria [J]. Molecular and Cellular Biology, 1999, 19(5): 3435-42.
[125] NIJTMANS L G J, DE JONG L, SANZ M A, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins [J]. Embo Journal, 2000, 19(11): 2444-51.
[126] TATSUTA T, LANGER T. Quality control of mitochondria: protection against neurodegeneration and ageing [J]. Embo Journal, 2008, 27(2): 306-14.
[127] STRUB G M, PAILLARD M, LIANG J, et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration [J]. Faseb Journal, 2011, 25(2): 600-12.
[128] DESIDERI E, CAVALLO A L, BACCARINI M. Alike but Different: RAF Paralogs and Their Signaling Outputs [J]. Cell, 2015, 161(5): 967-70.
[129] CHIU C F, HO M Y, PENG J M, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane [J]. Oncogene, 2013, 32(6): 777-87.
[130] CHIU C-F, PENG J-M, HUNG S-W, et al. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts [J]. Cancer Letters, 2012, 320(2): 205-14.
[131] CHOWDHURY I, THOMPSON W E, WELCH C, et al. Prohibitin (PHB) inhibits apoptosis in rat granulosa cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins [J]. Apoptosis, 2013, 18(12): 1513-25.
[132] CHOWDHURY I, XU W, STILES J K, et al. Apoptosis of rat granulosa cells after staurosporine and serum withdrawal is suppressed by adenovirus-directed overexpression of prohibitin [J]. Endocrinology, 2007, 148(1): 206-17.
[133] PENG Y T, CHEN P, OUYANG R Y, et al. Multifaceted role of prohibitin in cell survival and apoptosis [J]. Apoptosis, 2015, 20(9): 1135-49.
[134] FU P, YANG Z, BACH L A. Prohibitin-2 Binding Modulates Insulin-like Growth Factor-binding Protein-6 (IGFBP-6)-induced Rhabdomyosarcoma Cell Migration [J]. Journal of Biological Chemistry, 2013, 288(41): 29890-900.
[135] LUAN Z, HE Y, ALATTAR M, et al. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma [J]. Molecular Cancer, 2014, 13.
[136] DOUDICAN N A, ORLOW S J. Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib [J]. Oncogene, 2017, 36(3): 423-8.
[137] YOSHIMARU T, KOMATSU M, MATSUO T, et al. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells [J]. Nature Communications, 2013, 4.
[138] YOSHIMARU T, KOMATSU M, MIYOSHI Y, et al. Therapeutic advances in BIG3-PHB2 inhibition targeting the crosstalk between estrogen and growth factors in breast cancer [J]. Cancer Science, 2015, 106(5): 550-8.
[139] CAVEY M, LECUIT T. Molecular Bases of Cell-Cell Junctions Stability and Dynamics [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(5).
[140] GREEN K J, GETSIOS S, TROYANOVSKY S, et al. Intercellular Junction Assembly, Dynamics, and Homeostasis [J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(2).
[141] ABERCROMBIE M, HEAYSMAN J E, PEGRUM S M. Locomotion of fibroblasts in culture .2. ruffling [J]. Experimental Cell Research, 1970, 60(3): 437-+.
[142] GARDEL M L, SCHNEIDER I C, ARATYN-SCHAUS Y, et al. Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration [M]//SCHEKMAN R, GOLDSTEIN L, LEHMANN R. Annual Review of Cell and Developmental Biology, Vol 26. 2010: 315-33.
[143] WOLFENSON H, LAVELIN I, GEIGER B. Dynamic Regulation of the Structure and Functions of Integrin Adhesions [J]. Developmental Cell, 2013, 24(5): 447-58.
[144] HONDA S, SHIROTANI-IKEJIMA H, TADOKORO S, et al. The Integrin-Linked Kinase-PINCH-Parvin Complex Supports Integrin alpha IIb beta 3 Activation [J]. Plos One, 2013, 8(12).
[145] NIKOU S, AGALIOTI T, STATHOPOULOS G, et al. Expression of the ILK-PINCH-PARVIN (IPP) complex and its binding partner Rsu-1 in human non-small cell lung cancer [J]. European Respiratory Journal, 2016, 48.
[146] ROONEY N, WANG P B, BRENNAN K, et al. The Integrin-Mediated ILK-Parvin-alpha Pix Signaling Axis Controls Differentiation in Mammary Epithelial Cells [J]. Journal of Cellular Physiology, 2016, 231(11): 2408-17.
[147] STANCHI F, GRASHOFF C, YONGA C F N, et al. Molecular dissection of the ILK-PINCH-parvin triad reveals a fundamental role for the ILK kinase domain in the late stages of focal-adhesion maturation [J]. Journal of Cell Science, 2009, 122(11): 1800-11.
[148] XU H M, CAO H L, XIAO G Z. Signaling via PINCH: Functions, binding partners and implications in human diseases [J]. Gene, 2016, 594(1): 10-5.
[149] MASUELLI L, CUTLER M L. Increased expression of the ras suppressor Rsu-1 enhances Erk-2 activation and inhibits jun kinase activation [J]. Molecular and Cellular Biology, 1996, 16(10): 5466-76.
[150] LI S H, BORDOY R, STANCHI F, et al. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage [J]. Journal of Cell Science, 2005, 118(13): 2913-21.
[151] GUO L, CUI C H, ZHANG K, et al. Kindlin-2 links mechano-environment to proline synthesis and tumor growth [J]. Nature Communications, 2019, 10.
[152] GUO L, CUI C H, WANG J X, et al. PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth [J]. Nature Communications, 2020, 11(1).
[153] CHEN K, TU Y Z, ZHANG Y J, et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells [J]. Journal of Biological Chemistry, 2008, 283(5): 2508-17.
[154] CABODI S, CAMACHO-LEAL M D, DI STEFANO P, et al. Integrin signalling adaptors: not only figurants in the cancer story [J]. Nature Reviews Cancer, 2010, 10(12): 858-70.
[155] EKE I, KOCH U, HEHLGANS S, et al. PINCH1 regulates Akt1 activation and enhances radioresistance by inhibiting PP1 alpha [J]. Journal of Clinical Investigation, 2010, 120(7): 2516-27.
[156] WU C Y. The PINCH-ILK-parvin complexes: assembly, functions and regulation [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2004, 1692(2-3): 55-62.
[157] HOWE A K, JULIANO R L. Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase [J]. Nature Cell Biology, 2000, 2(9): 593-600.
[158] LEE J W, JULIANO R. Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways [J]. Molecules and Cells, 2004, 17(2): 188-202.
[159] LIN T H, CHEN Q M, HOWE A, et al. Cell anchorage permits efficient signal transduction between Ras and its downstream kinases [J]. Journal of Biological Chemistry, 1997, 272(14): 8849-52.
[160] RENSHAW M W, REN X D, SCHWARTZ M A. Growth factor activation of MAP kinase requires cell adhesion [J]. Embo Journal, 1997, 16(18): 5592-9.
[161] SCHWARTZ M A, ASSOIAN R K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways [J]. Journal of Cell Science, 2001, 114(14): 2553-60.
[162] SLACK-DAVIS J K, EBLEN S T, ZECEVIC M, et al. PAKI phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation [J]. Journal of Cell Biology, 2003, 162(2): 281-91.
[163] FRISCH S M, FRANCIS H. Disruption of epithelial cell-matrix interactions induces apoptosis [J]. Journal of Cell Biology, 1994, 124(4): 619-26.
[164] GUO W J, GIANCOTTI F G. Integrin signalling during tumour progression [J]. Nature Reviews Molecular Cell Biology, 2004, 5(10): 816-26.
[165] STUPACK D G, CHERESH D A. Get a ligand, get a life: integrins, signaling and cell survival [J]. Journal of Cell Science, 2002, 115(19): 3729-38.
[166] HORBINSKI C, MOJESKY C, KYPRIANOU N. Live Free or Die Tales of Homeless (Cells) in Cancer [J]. American Journal of Pathology, 2010, 177(3): 1044-52.
[167] IAMS W T, LOVLY C M. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade [J]. Clinical Cancer Research, 2015, 21(19): 4270-7.
[168] POLLAK M. The insulin and insulin-like growth factor receptor family in neoplasia: an update [J]. Nature Reviews Cancer, 2012, 12(3): 159-69.
[169] ROSS J A, NAGY Z S, KIRKEN R A. The PHB1/2 phosphocomplex is required for mitochondrial homeostasis and survival of human T cells [J]. Journal of Biological Chemistry, 2008, 283(8): 4699-713.
[170] ROSS J A, ROBLES-ESCAJEDA E, OAXACA D M, et al. The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies [J]. Oncotarget, 2017, 8(39): 65445-56.
[171] TATSUTA T, MODEL K, LANGER T. Formation of membrane-bound ring complexes by prohibitins in mitochondria [J]. Molecular Biology of the Cell, 2005, 16(1): 248-59.
[172] ANDE S R, MISHRA S. Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2) [J]. Biochemistry and Cell Biology, 2010, 88(3): 553-8.
[173] CHIU C F, PENG J M, HUNG S W, et al. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts [J]. Cancer Letters, 2012, 320(2): 205-14.
[174] WU Q, WU S Y. The role of lipid raft translocation of prohibitin in regulation of Akt and Raf-protected apoptosis of HaCaT cells upon ultraviolet B irradiation [J]. Molecular Carcinogenesis, 2017, 56(7): 1789-97.
[175] HASMIM M, VASSALLI G, ALGHISI G C, et al. Expressed isolated integrin beta I subunit cytodomain induces endothelial cell death secondary to detachment [J]. Thrombosis and Haemostasis, 2005, 94(5): 1060-70.
[176] MALIN D, STREKALOVA E, PETROVIC V, et al. ERK-regulated alpha B-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo [J]. Oncogene, 2015, 34(45): 5626-34.
[177] CAO Y, LIANG H B, ZHANG F, et al. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer [J]. Journal of Experimental & Clinical Cancer Research, 2016, 35.
[178] LUAN Z, HE Y, ALATTAR M, et al. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma [J]. Molecular Cancer, 2014, 13.
[179] POLIER G, NEUMANN J, THUAUD F, et al. The Natural Anticancer Compounds Rocaglamides Inhibit the Raf-MEK-ERK Pathway by Targeting Prohibitin 1 and 2 [J]. Chemistry & Biology, 2012, 19(9): 1093-104.
[180] MONTANEZ E, KARAKOSE E, TISCHNER D, et al. PINCH-1 promotes Bcl-2-dependent survival signalling and inhibits JNK-mediated apoptosis in the primitive endoderm [J]. Journal of Cell Science, 2012, 125(21): 5233-40.
[181] CHEN K, TU Y, ZHANG Y, et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells [J]. Journal of Biological Chemistry, 2008, 283(5): 2508-17.
[182] HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly [J]. Nature Cell Biology, 2015, 17(12): 1577-87.

所在学位评定分委会
生物系
国内图书分类号
Q257
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355654
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
王美玲. RSU1对MEK-ERK信号通路的调控作用及其机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849489-王美玲-生物系.pdf(7951KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王美玲]的文章
百度学术
百度学术中相似的文章
[王美玲]的文章
必应学术
必应学术中相似的文章
[王美玲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。