[1] BP. Statistical Review of World Energy 2021[DB/OL]. London, 2021. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/introduction.html.
[2] TIAN S, YAN F, ZHANG Z, et al. Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency[J]. Science advances, 2019, 5: eaav5077.
[3] 刘飞. 胺基两相吸收剂捕集二氧化碳机理研究[D]. 浙江大学, 2020.
[4] KHAN I U, OTHMAN M H D, HASHIM H, et al. Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage[J]. Energy Conversion and Management, 2017, 150: 277-294.
[5] 生态环境部环境规划院. 中国二氧化碳捕集利用与封存(CCUS)年度报告[R]. 2021.
[6] SUN Q, LI H, YAN J, et al. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 521-532.
[7] ZHOU K, CHAEMCHUEN S, VERPOORT F. Alternative materials in technologies for biogas upgrading via CO2 capture[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1414-1441.
[8] BACIOCCHI R, CARNEVALE E, CORTI A, et al. Innovative process for biogas upgrading with CO2 storage: Results from pilot plant operation[J]. Biomass and Bioenergy, 2013, 53: 128-137.
[9] 尹龙天. 基于MEA-乙醇吸收的旋转床用于沼气中CO2脱除性能与模拟研究[D]. 北京化工大学, 2021.
[10] SCARLAT N, DALLEMAND J-F, FAHL F. Biogas: Developments and perspectives in Europe[J]. Renewable Energy, 2018, 129: 457-472.
[11] LARSSON M, GRONKVIST S, ALVFORS P. Upgraded biogas for transport in Sweden – effects of policy instruments on production, infrastructure deployment and vehicle sales[J]. Journal of Cleaner Production, 2015, 112: 3774-3784.
[12] ANGELIDAKI I, TREU L, TSAPEKOS P, et al. Biogas upgrading and utilization: Current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-466.
[13] ARTO I, CAPELLÁN-PÉREZ I, LAGO R, et al. The energy requirements of a developed world[J]. Energy for Sustainable Development, 2016, 33: 1-13.
[14] KHAN M U, LEE J T E, BASHIR M A, et al. Current status of biogas upgrading for direct biomethane use: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111343.
[15] 中华人民共和国国家发展和改革委员会. 可再生能源发展“十三五”规划[R]. 2016.
[16] 李秀金. 沼气生产国内外现状与发展趋势[R]. 北京 科技部, 2017.
[17] 李景明, 李冰峰, 徐文勇. 中国沼气产业发展的政策影响分析[J]. 中国沼气, 2018, 36(05): 3-10.
[18] 中华人民共和国国家统计局. 中国统计年鉴[DB]. 2019.
[19] TRAN V T L, GÉLIN P, FERRONATO C, et al. Adsorption of linear and cyclic siloxanes on activated carbons for biogas purification: Sorbents regenerability[J]. Chemical Engineering Journal, 2019, 378: 122152.
[20] KUNKEL C, VIÑES F, ILLAS F. Biogas upgrading by transition metal carbides[J]. ACS Applied Energy Materials, 2017, 1(1): 43-47.
[21] 刘冰. MOF/聚酰亚胺复合膜结构设计及对沼气中CO2/CH4分离性能研究[D]. 哈尔滨工业大学, 2021.
[22] 常旭宁, 吴媛媛. 沼气提纯生物天然气的气质标准探讨[J]. 中国沼气, 2019, 37(05): 73-77.
[23] 包海军. 我国沼气提纯技术及生物天然气产业发展情况[J]. 中国沼气, 2021, 39(01): 54-58.
[24] SANTOS M S, GRANDE C A, RODRIGUES A E. New cycle configuration to enhance performance of kinetic PSA processes[J]. Chemical Engineering Science, 2011, 66(8): 1590-1599.
[25] CHEN C, HUANG H, YU Y, et al. Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture[J]. Chemical Engineering Journal, 2018, 353: 584-594.
[26] AUGELLETTI R, CONTI M, ANNESINI M C. Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide[J]. Journal of Cleaner Production, 2017, 140: 1390-1398.
[27] SIEGELMAN R L, MILNER P J, FORSE A C, et al. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal–organic framework[J]. Journal of the American Chemical Society, 2019, 141(33): 13171-13186..
[28] RYCKEBOSCH E, DROUILLON M, VERVAEREN H. Techniques for transformation of biogas to biomethane[J]. Biomass and Bioenergy, 2011, 35(5): 1633-1645.
[29] LI K, TIAN S, JIANG J, et al. Pine cone shell-based activated carbon used for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4(14): 5223-5234.
[30] HU X, LIU L, LUO X, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture[J]. Applied Energy, 2020, 260: 114244.
[31] BASU S, KHAN A L, CANO-ODENA A, et al. Membrane-based technologies for biogas separations[J]. Chemical Society Reviews, 2010, 39(2): 750-768.
[32] MAKARUK A, MILTNER M, HARASEK M. Membrane biogas upgrading processes for the production of natural gas substitute[J]. Separation and Purification Technology, 2010, 74(1): 83-92.
[33] KADAM R, PANWAR N L. Recent advancement in biogas enrichment and its applications[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 892-903.
[34] WANG L, ZHANG Y, WANG R, et al. Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture[J]. Environmental Science & Technology, 2018, 52(24): 14556-14563.
[35] PAUL S, GHOSHAL A K, MANDAL B. Absorption of carbon dioxide into aqueous solutions of 2-piperidineethanol: Kinetics analysis[J]. Industrial & Engineering Chemistry Research, 2008, 48(3): 1414-1419.
[36] LV B, GUO B, ZHOU Z, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735.
[37] ABOUDHEIR A, TONTIWACHWUTHIKUL P, CHAKMA A, et al. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions[J]. Chemical Engineering Science, 2003, 58(23-24): 5195-5210.
[38] SHOUKAT U, PINTO D, KNUUTILA H. Study of various aqueous and non-aqueous amine blends for hydrogen sulfide removal from natural gas[J]. Processes, 2019, 7(3): 160.
[39] SU F, LU C, CHEN H S. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes[J]. Langmuir, 2011, 27(13): 8090-8098.
[40] BEKKERING J, BROEKHUIS A A, VAN GEMERT W J. Optimisation of a green gas supply chain – A review[J]. Bioresource Technology, 2010, 101(2): 450-456.
[41] LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[42] QI G, FU L, CHOI B H, et al. Efficient CO2 sorbents based on silica foam with ultra-large mesopores[J]. Energy & Environmental Science, 2012, 5(6): 7368-7375.
[43] LOURENÇO M A O, NUNES C, GOMES J R B, et al. Pyrolyzed chitosan-based materials for CO2/CH4 separation[J]. Chemical Engineering Journal, 2019, 362: 364-374.
[44] SEREJO M L, POSADAS E, BONCZ M A, et al. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes[J]. Environmental Science & Technology, 2015, 49(5): 3228-3236.
[45] CHAEMCHUEN S, KABIR N A, ZHOU K, et al. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy[J]. Chemical Society Reviews, 2013, 42(24): 9304-9332.
[46] TOLEDO-CERVANTES A, MADRID-CHIRINOS C, CANTERA S, et al. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors[J]. Bioresource Technology, 2017, 225: 336-342.
[47] VARGHESE A M, KARANIKOLOS G N. CO2 capture adsorbents functionalized by amine – bearing polymers: A review[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103005.
[48] LI K, JIANG J, TIAN S, et al. Polyethyleneimine-nano silica composites: A low-cost and promising adsorbent for CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(5): 2166-2175.
[49] MENG Y, JIANG J, GAO Y, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents[J]. Journal of CO2 Utilization, 2018, 27: 89-98.
[50] ZHANG P, ZHONG Y, DING J, et al. A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 963-973.
[51] MENG Y, JIANG J, GAO Y, et al. Biogas upgrading to methane: Application of a regenerable polyethyleneimine-impregnated polymeric resin (NKA-9) via CO2 sorption[J]. Chemical Engineering Journal, 2019, 361: 294-303.
[52] PARDAKHTI M, JAFARI T, TOBIN Z, et al. Trends in solid adsorbent materials development for CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34533-34559.
[53] LI K, JIANG J, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents[J]. Applied Energy, 2014, 136: 750-755.
[54] ZHOU L, FAN J, CUI G, et al. Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels[J]. Greem Chemistry, 2014, 16(8): 4009-4016.
[55] WILFONG W C, KAIL B W, JONES C W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: A new class 4 category[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12780-12791.
[56] HICKS J C, DRESE J H, FAUTH D J, et al. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130: 2902-2903.
[57] SUJAN A R, KUMAR D R, SAKWA-NOVAK M, et al. Poly(glycidyl amine)-loaded SBA-15 sorbents for CO2 capture from dilute and ultradilute gas mixtures[J]. ACS Applied Polymer Materials, 2019, 1(11): 3137-3147.
[58] CHENG H, SONG H, TOAN S, et al. Experimental investigation of CO2 adsorption and desorption on multi-type amines loaded HZSM-5 zeolites[J]. Chemical Engineering Journal, 2021, 406: 126882.
[59] KELLER L, OHS B, ABDULY L, et al. Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 476-484.
[60] YANG H, LI W, LIU J, et al. Polyethylenimine-impregnated resins: The effect of support structures on selective adsorption for CO2 from simulated biogas[J]. Chemical Engineering Journal, 2019, 355: 822-829.
[61] KANG J H, YOON T-U, KIM S-Y, et al. Extraordinarily selective adsorption of CO2 over N2 in a polyethyleneimine-impregnated NU-1000 material[J]. Microporous and Mesoporous Materials, 2019, 281: 84-91.
[62] SAKWA-NOVAK M A, JONES C W. Steam induced structural changes of a poly(ethylenimine) impregnated gamma-alumina sorbent for CO2 extraction from ambient air[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9245-9255.
[63] WANG J, HUANG L, YANG R, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7(11): 3478-3518.
[64] LOPEZ-ARANGUREN P, VEGA L F, DOMINGO C. A new method using compressed CO2 for the in situ functionalization of mesoporous silica with hyperbranched polymers[J]. Chemical Communications, 2013, 49: 11776-11778.
[65] LINNEEN N N, PFEFFER R, LIN Y S. CO2 adsorption performance for amine grafted particulate silica aerogels[J]. Chemical Engineering Journal, 2014, 254: 190-197.
[66] SIEGELMAN R L, MILNER P J, KIM E J, et al. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions[J]. Energy & Environmental Science, 2019, 12(7): 2161-2173.
[67] LOU F, ZHANG A, ZHANG G, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure[J]. Applied Energy, 2020, 264: 114637.
[68] JO D H, JUNG H, SHIN D K, et al. Effect of amine structure on CO2 adsorption over tetraethylenepentamine impregnated poly methyl methacrylate supports[J]. Separation and Purification Technology, 2014, 125: 187-193.
[69] WANG Y, GUO T, HU X, et al. Mechanism and kinetics of CO2 adsorption for tepa-impregnated hierarchical mesoporous carbon in the presence of water vapor[J]. Powder Technology, 2020, 368: 227-236.
[70] GOEPPERT A, METH S, PRAKASH G K S, et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy & Environmental Science, 2010, 3(12): 1949-1960.
[71] Kim C, Cho H S, Chang S, et al. An ethylenediamine-grafted y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation[J]. Energy & Environmental Science, 2016, 9(5): 1803-1811.
[72] HEDIN N, ANDERSSON L, BERGSTRÖM L, et al. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption[J]. Applied Energy, 2013, 104: 418-433.
[73] YILDIZ M G, DAVRAN-CANDAN T, GÜNAY M E, et al. CO2 capture over amine-functionalized MCM-41 and SBA-15: Exploratory analysis and decision tree classification of past data[J]. Journal of CO2 Utilization, 2019, 31: 27-42.
[74] ZHANG S, RAVI S, LEE Y-R, et al. Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 241-249.
[75] SUN Y, LIU X, SUN C, et al. Synthesis and functionalisation of spherical meso-, hybrid meso/macro- and macro-porous cellular silica foam materials with regulated pore sizes for CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6: 23587-23601.
[76] SANZ R, CALLEJA G, ARENCIBIA A, et al. CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization[J]. Microporous and Mesoporous Materials, 2015, 209: 165-171.
[77] PATIL U, FIHRI A, EMWAS A-H, et al. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability[J]. Chemical Science, 2012, 3(7): 2224-2229.
[78] QIAN X, YANG J, FEI Z, et al. A simple strategy to improve PEI dispersion on MCM-48 with long-alkyl chains template for efficient CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10975-10983.
[79] XU X, SONG C, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16: 1463-1469.
[80] SON W-J, CHOI J-S, AHN W-S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous and Mesoporous Materials, 2008, 113: 31-40.
[81] YAN X, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15: Effect of pore structure on the performance for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220-3226.
[82] HEYDARI-GORJI A, YONG Y, SAYARI A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas[J]. Energy & Fuels, 2011, 25: 4206-4210.
[83] QI G, WANG Y, ESTEVEZ L, et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules [J]. Energy & Environmental Science, 2011, 4(2): 444-452.
[84] HAN Y, HWANG G, KIM H, et al. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015, 259: 653-662.
[85] SANZ-PÉREZ E S, DANTAS T C M, ARENCIBIA A, et al. Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Journal, 2017, 308: 1021-1033.
[86] THI LE M U, LEE S-Y, PARK S-J. Preparation and characterization of PEI-loaded MCM-41 for CO2 capture[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12340-12346.
[87] LIU Z, TENG Y, ZHANG K, et al. CO2 adsorption performance of different amine-based siliceous MCM-41 materials[J]. Journal of Energy Chemistry, 2015, 24(3): 322-330.
[88] ZHAO P, ZHANG G, YAN H, et al. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review[J]. Chinese Journal of Chemical Engineering, 2021, 35: 17-43.
[89] CHEN C, KIM S-S, CHO W-S, et al. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture[J]. Applied Surface Science, 2015, 332: 167-171.
[90] WANG Y, DU T, SONG Y, et al. Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture[J]. Solid State Sciences, 2017, 73: 27-35.
[91] WANG Y, DU T, QIU Z, et al. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materials Chemistry and Physics, 2018, 207: 105-113.
[92] DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7(11): 3574-3592.
[93] TANG Z, HAN Z, YANG G, et al. Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture[J]. Applied Surface Science, 2013, 277: 47-52.
[94] PENG H, ZHANG J, ZHANG J, et al. Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 1159-1165.
[95] CHEN Z, DENG S, WEI H, et al. Polyethylenimine-impregnated resin for high CO2 adsorption: An efficient adsorbent for CO2 capture from simulated flue gas and ambient air[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6937-6945.
[96] MENG Y, JU T, MENG F, et al. Insights into the critical role of abundant-porosity supports in polyethylenimine functionalization as efficient and stable CO2 adsorbents[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54018-54031.
[97] LEE W R, HWANG S Y, RYU D W, et al. Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism[J]. Energy & Environmental Science, 2014, 7(2): 744-751.
[98] CHEN C, AHN W-S. CO2 capture using mesoporous alumina prepared by a sol–gel process[J]. Chemical Engineering Journal, 2011, 166(2): 646-651.
[99] YAN F, JIANG J, LIU N, et al. Green synthesis of mesoporous gamma-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2[J]. Journal of Hazardous materials, 2018, 359: 535-543.
[100] 赵琰. 氧化铝(拟薄水铝石)的孔结构研究[J]. 工业催化, 2002, 10(1): 55-63.
[101] TOLEDO-CHÁVEZ G, PANIAGUA-RODRÍGUEZ J-C, ZÁRATE-MEDINA J, et al. Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina[J]. Catalysis Today, 2016, 271: 207-212.
[102] YAN X, ZHANG Y, QIAO K, et al. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent[J]. Journal of Hazardous materials, 2011, 192: 1505-1508.
[103] BALI S, CHEN T, CHAIKITTISILP W, et al. Oxidative stability of amino polymer–alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554.
[104] BHOWMIK K, CHAKRAVARTY A, BYSAKH S, et al. γ-alumina nanorod/reduced graphene oxide as support for poly(ethylenimine) to capture carbon dioxide from flue gas[J]. Energy Technology, 2016, 4(11): 1409-1419.
[105] YANG Y, XU Y, HAN B, et al. Effects of synthetic conditions on the textural structure of pseudo-boehmite[J]. Journal of Colloid and Interface Science, 2016, 469: 1-7.
[106] CHAIKITTISILP W, KIM H-J, JONES C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air[J]. Energy & Fuels, 2011, 25(11): 5528-5537.
[107] GUNATHILAKE C, GANGODA M, JARONIEC M. Mesoporous alumina with amidoxime groups for CO2 sorption at ambient and elevated temperatures[J]. Industrial & Engineering Chemistry Research, 2016, 55(19): 5598-5607.
[108] YAMADA H, DAO D, FUJIKI J, et al., Mesoporous silica sorbents impregnated with blends of tetraethylenepentamine and alkanolamine for CO2 separation[J]. Separation Science and Technology, 2015, 50: 2948–2953.
[109] LIU X, ZHOU K, FARNDON M, et al. Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation[J]. Applied Energy, 2019, 255: 113643.
[110] CHOI S, DRESE J H, JONES C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. ChemSusChem, 2010, 2(9): 796-854.
[111] YAMADA H, CHOWDHURY F, FUJIKI J, et al. Enhancement mechanism of the CO2 adsorption–desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9574-9581.
[112] GADIPELLI S, PATEL H A, GUO Z. An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-amine@carbon sorbent[J]. Advanced Materials, 2015, 27(33): 4903-4909.
[113] KISHOR R, GHOSHAL A K. High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation[J]. Chemical Engineering Journal, 2016, 300: 236-244.
[114] JEON S, JUNG H, KIM S H, et al. Double-layer structured CO2 adsorbent functionalized with modified polyethyleneimine for high physical and chemical stability[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21213-21223.
[115] SAYARI A, HEYDARI-GORJI A, YANG Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways[J]. Journal of the American Chemical Society, 2012, 134(33): 13834-13842.
[116] FAYAZ M, SAYARI A. Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43747-43754.
[117] LI W, BOLLINI P, DIDAS S A, et al. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3363-3372.
[118] CHOI W, MIN K, KIM C, et al. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption[J]. Nature Communications, 2016, 7: 12640.
[119] YANG C, DU Z, JIN J, et al. Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability[J]. Applied Energy, 2020, 260: 114265.
[120] POTTER M E, CHO K M, LEE J J, et al. Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents[J]. ChemSusChem, 2017, 10(10): 2192-2201.
[121] SRINIVASAN P D, KHIVANTSEV K, TENGCO J M M, et al. Enhanced ethanol dehydration on γ-Al2O3 supported cobalt catalyst[J]. Journal of Catalysis, 2019, 373: 276-296.
[122] ZAKHAROVA M V, MASOUMIFARD N, HU Y, et al. Designed synthesis of mesoporous solid-supported lewis acid-base pairs and their CO2 adsorption behaviors[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 13199-13210.
[123] ZENG W, BAI H. Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture[J]. Chemical Engineering Journal, 2014, 251: 1-9.
[124] PANEK R, WDOWIN M, FRANUS W, et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture[J]. Journal of CO2 Utilization, 2017, 22: 81-90.
[125] WANG J, YANG Y, JIA Q, et al. Solid-waste-derived carbon dioxide-capturing materials[J]. ChemSusChem, 2019, 12(10): 2055-2082.
[126] 中华人民共和国工业和信息化部. 大宗工业固体废物综合利用“十二五”规划[R]. 2011.
[127] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97: 1-23.
[128] CHANDRASEKAR G, SON W-J, AHN W-S. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption[J]. Journal of Porous Materials, 2008, 16(5): 545-551.
[129] 刘捷, 王泽黎, 张佳馨, 等. 高铝粉煤灰综合利用研究进展[J]. 化工设计通讯, 2020, 46(09): 147+191.
[130] 中华人民共和国国家发展和改革委员会. 关于加强高铝粉煤灰资源开发利用的指导意见[R]. 2011.
[131] 杨静, 蒋周青, 马鸿文, 等. 中国铝资源与高铝粉煤灰提取氧化铝研究进展[J]. 地学前缘, 2014, 21(05): 313-324.
[132] 颜枫. 粉煤灰合成有序介孔硅铝材料及残渣吸附CO2技术研究[D]. 清华大学, 2018.
[133] LOGANATHAN S, TIKMANI M, GHOSHAL A K. Novel pore-expanded MCM-41 for CO2 capture: Synthesis and characterization[J]. Langmuir, 2013, 29(10): 3491-3499.
[134] ZUKAL A, DOMINGUEZ I, MAYEROVA J, et al. Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide[J]. Langmuir, 2009, 25(17): 10314-10321.
[135] LIU H, LI Y, YIN C, et al. One-pot synthesis of ordered mesoporous nimo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2016, 198: 493-507.
[136] WAN Y, LIU Y, WANG Y, et al. Preparation of large-pore-volume γ-alumina nanofibers with a narrow pore size distribution in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8888-8894.
[137] HAO B, FANG K, XIANG L, et al. Synthesization and crystallization mechanism of nano-scale γ-AlOOH with various morphologies[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(3): 376-379.
[138] CASTELLAZZI P, NOTARO M, BUSCA G, et al. CO2 capture by functionalized alumina sorbents: Diethanolamine on γ-alumina[J]. Microporous and Mesoporous Materials, 2016, 226: 444-453.
[139] CERVENY S, SCHWARTZ G A, OTEGUI J, et al. Dielectric study of hydration water in silica nanoparticles[J]. The Journal of Physical Chemistry C, 2012, 116(45): 24340-24349.
[140] MENG X, DUAN L, XIE X, et al. Synthesis of macro-mesostructured γ-Al2O3 with large pore volume and high surface area by a facile secondary reforming method[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(2): 20-28.
[141] YAN F, JIANG J, LI K, et al. Green synthesis of nanosilica from coal fly ash and its stabilizing effect on CaO sorbents for CO2 capture[J]. Environmental Science & Technology, 2017, 51(13): 7606-7615.
[142] HUANG X, LI B, WANG S, et al. Facile in-situ synthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124163.
[143] SHEN X, YAN F, LI C, et al. A green synthesis of PEI@nano-SiO2 adsorbent from coal fly ash: Selective and efficient CO2 adsorption from biogas[J]. Sustainable Energy & Fuels, 2021, 5(4): 1014-1025.
[144] 李凯敏. 固废源SiO2基固态胺材料用于CO2捕集技术及机理研究[D]. 清华大学, 2017.
[145] LAI Q, DIAO Z, KONG L, et al. Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture[J]. Applied Energy, 2018, 223: 293-301.
[146] OUYANG J, GU W, ZHANG Y, et al. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization[J]. Chemical Engineering Journal, 2018, 341: 432-440.
[147] YANG S, ZHAN L, XU X, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture[J]. Advanced Materials, 2013, 25(15): 2130-2134.
[148] LEE D, JIN Y, JUNG N, et al. Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array[J]. Environmental Science & Technology, 2011, 45(13): 5704-5709.
[149] JEON S, MIN J, KIM S H, et al. Introduction of cross-linking agents to enhance the performance and chemical stability of polyethyleneimine-impregnated CO2 adsorbents: Effect of different alkyl chain lengths[J]. Chemical Engineering Journal, 2020, 398: 125531.
[150] SAKWA-NOVAK M A, YOO C J, TAN S, et al. Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air[J]. ChemSusChem, 2016, 9(14): 1859-1868.
[151] JUNG H, JEON S, JO D H, et al. Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents[J]. Chemical Engineering Journal, 2017, 307: 836-844.
[152] LAI F, YAN F, WANG P, et al. Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts[J]. Journal of Cleaner Production, 2021, 316: 128243.
[153] SANZ-PÉREZ E S, FERNÁNDEZ A, ARENCIBIA A, et al. Hybrid amine-silica materials: Determination of N content by 29Si NMR and application to direct CO2 capture from air[J]. Chemical Engineering Journal, 2019, 373: 1286-1294.
[154] MARSHALL C P, SCHOLZ G, BRAUN T, et al. Strong lewis acidic catalysts for C-F bond activation by fluorination of activated γ-Al2O3[J]. Catalysis Science & Technology, 2019, 10(2): 391-402.
[155] YANG H, LIU M, JING O. Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin[J]. Applied Clay Science, 2010, 47(3-4): 438-443.
[156] WAN C, HU M Y, JAEGERS N R, et al. Investigating the surface structure of γ-Al2O3 supported wox catalysts by high field 27Al MAS NMR and electronic structure calculations[J]. The Journal of Physical Chemistry C, 2016, 120(40): 23093-23103.
[157] FITZGERALD J J, PIEDRA G, DEC S F, et al. Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1h and 27Al NMR[J]. Journal of the American Chemical Society, 1997, 119: 7832-7842..
[158] HARPE A V, PETERSEN H, LI Y, et al. Characterization of commercially available and synthesized polyethylenimines for gene delivery[J]. Journal of Controlled Release, 2000, 69(2): 309-322.
[159] HOLYCROSS D R, CHAI M. Comprehensive NMR studies of the structures and properties of PEI polymers[J]. Macromolecules, 2013, 46(17): 6891-6897.
[160] GUO M, LIANG S, LIU J, et al. Epoxide-functionalization of grafted tetraethylenepentamine on the framework of an acrylate copolymer as a CO2 sorbent with long cycle stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3853-3864.
[161] CHEN C, XU H, JIANG Q, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents[J]. Energy, 2021, 214: 119093.
[162] 蔡卫权, 余小锋. 高比表面大中孔拟薄水铝石和γ-Al2O3的制备研究[J].化学进展, 2007, 19(09): 1322-1330.
[163] CAI W, LI H, ZHANG Y. Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the structural and textural properties of γ-Al2O3[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295(1-3): 185-192.
[164] CAI W, LI H, ZHANG Y. Azeotropic distillation-assisted preparation of macro-mesostructured γ-Al2O3 nanofibres of crumpled sheet-like morphology[J]. Materials Chemistry and Physics, 2006, 96(1): 136-139.
[165] KALISZEWSKI M S, HEUER A H. Alcohol interaction with zirconia powders[J]. Journal of the American Ceramic Society, 1990, 73(6): 1504-1509.
[166] JONES S L, NORMAN C J. Dehydration of hydrous zirconia with methanol[J]. Journal of the American Ceramic Society, 1988, 71(4): C190-C191.
[167] MASKARA A, SMITH D M. Agglomeration during the drying of fine silica powders, part II: The role of particle solubility[J]. Journal of the American Ceramic Society, 1997, 80(7): 1715-1722.
[168] MARESZ K, CIEMIĘGA A, MALINOWSKI J J, et al. Effect of support structure and polyamine type on CO2 capture in hierarchically structured monolithic sorbents[J]. Chemical Engineering Journal, 2019, 383: 123175.
[169] ZHANG L, ZHAN N, JIN Q, et al. Impregnation of polyethylenimine in mesoporous multilamellar silica vesicles for CO2 capture: A kinetic study[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5885-5891.
[170] LIU Q, SHI J, ZHENG S, et al. Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11677-11683.
[171] MIN K, CHOI W, KIM C, et al. Rational design of the polymeric amines in solid adsorbents for postcombustion carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23825-23833.
[172] MELLO M R, PHANON D, SILVEIRA G Q, et al. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture[J]. Microporous and Mesoporous Materials, 2011, 143(1): 174-179.
[173] ZHANG H, YANG L, GANZ E. Adsorption properties and microscopic mechanism of CO2 capture in 1,1-dimethyl-1,2-ethylenediamine-grafted metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18533-18540.
[174] WAN M, ZHU H, LI Y, et al. Novel CO2-capture derived from the basic ionic liquids orientated on mesoporous materials[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12947-12955.
[175] JI W, TANG Q, SHEN Z, et al. The adsorption of phosphate on hydroxylated alpha-SiO2 (0 0 1) surface and influence of typical anions: A theoretical study[J]. Applied Surface Science, 2020, 501: 144233.
[176] LI K, LU L, XU Y, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103289.
[177] LI K, JIANG J, CHEN X, et al. Research on urea linkages formation of amine functional adsorbents during CO2 capture process: Two key factors analysis, temperature and moisture[J]. The Journal of Physical Chemistry C, 2016, 120(45): 25892-25902.
[178] ZHAO P, ZHANG G, XU Y, et al. Amine functionalized hierarchical bimodal mesoporous silicas as a promising nanocomposite for highly efficient CO2 capture[J]. Journal of CO2 Utilization, 2019, 34: 543-557.
[179] MILLER D D, YU J, CHUANG S S C. Unraveling the structure and binding energy of adsorbed CO2/H2O on amine sorbents[J]. The Journal of Physical Chemistry C, 2020, 124(45): 24677-24689.
[180] ZHANG G, ZHAO P, HAO L, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support[J]. Separation and Purification Technology, 2019, 209: 516-527.
[181] ZHANG G, ZHAO P, HAO L, et al. Amine-modified SBA-15: A promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24: 22-33.
[182] MIN K, CHOI W, CHOI M. Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent[J]. ChemSusChem, 2017, 10(11): 2518-2526.
[183] SAYARI A, BELMABKHOUT Y. Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor[J]. Journal of the American Chemical Society, 2010, 132(18): 6312-6314.
[184] LIU L, JIN S, KO K, et al. Alkyl-functionalization of (3-aminopropyl)triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption[J]. Chemical Engineering Journal, 2020, 382: 122834.
[185] HAMDY L B, WAKEHAM R J, TADDEI M, et al. Epoxy cross-linked polyamine CO2 sorbents enhanced via hydrophobic functionalization[J]. Chemistry of Materials, 2019, 31(13): 4673-4684.
[186] MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture[J]. Nature Communications, 2018, 9(1): 726.
[187] VU Q T, YAMADA H, YOGO K. Effects of amine structures on oxidative degradation of amine-functionalized adsorbents for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4942-4950.
[188] MENG Y, JIANG J, AIHEMAITI A, et al. Feasibility of CO2 capture from O2-containing flue gas using a poly(ethylenimine)-functionalized sorbent: Oxidative stability in long-term operation[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33781-33791.
[189] BOLLINI P, CHOI S, DRESE J H, et al. Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture[J]. Energy & Fuels, 2011, 25(5): 2416-2425.
[190] AHMADALINEZHAD A, SAYARI A. Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: Insights into the nature of deactivated species[J]. Physical Chemistry Chemical Physics, 2014, 16(4): 1529-1535.
[191] SRIKANTH C S, CHUANG S S. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442.
[192] MENG Y, JU T, HAN S, et al. Discovering the interference of hydrogen sulfide on polyethylenimine-functionalized porous resin for biogas upgrading via CO2 adsorption[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 14722-14734.
[193] THOMPSON S J, SOUKRI M, LAIL M. Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2018, 350: 1056-1065.
修改评论