中文版 | English
题名

Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system

作者
通讯作者Kurganov,Alexander
发表日期
2022-06-27
DOI
发表期刊
ISSN
2822-7840
EISSN
2804-7214
卷号56期号:4页码:1327-1360
摘要
We extend the adaptive moving mesh (AMM) central-upwind schemes recently proposed in Kurganov et al. [Commun. Appl. Math. Comput. 3 (2021) 445-479] in the context of one- (1-D) and two-dimensional (2-D) Euler equations of gas dynamics and granular hydrodynamics, to the 1-D and 2-D Saint-Venant system of shallow water equations. When the bottom topography is nonflat, these equations form hyperbolic systems of balance laws, for which a good numerical method should be capable of preserving a delicate balance between the flux and source terms as well as preserving the nonnegativity of water depth even in the presence of dry or almost dry regions. Therefore, in order to extend the AMM central-upwind schemes to the Saint-Venant systems, we develop special positivity preserving reconstruction and evolution steps of the AMM algorithms as well as special corrections of the solution projection step in (almost) dry areas. At the same time, we enforce the moving mesh to be structured even in the case of complicated 2-D computational domains. We test the designed method on a number of 1-D and 2-D examples that demonstrate robustness and high resolution of the proposed numerical approach.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
NSFC["11771201","12111530004","12171226"] ; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000823640000008
出版者
EI入藏号
20222712317856
EI主题词
Equations of motion ; Gas dynamics ; Mesh generation ; Numerical methods ; One dimensional ; Topography
EI分类号
Gas Dynamics:631.1.2 ; Computer Applications:723.5 ; Calculus:921.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Numerical Methods:921.6 ; Materials Science:951
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85133270180
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355682
专题理学院_数学系
作者单位
1.Department of Mathematics,SUSTech Intl. Ctr. for Math. and Guangdong Prov. Key Lab. of Compl. Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,University of Texas at San Antonio,San Antonio,78249,United States
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Kurganov,Alexander,Qu,Zhuolin,Wu,Tong. Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS,2022,56(4):1327-1360.
APA
Kurganov,Alexander,Qu,Zhuolin,&Wu,Tong.(2022).Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS,56(4),1327-1360.
MLA
Kurganov,Alexander,et al."Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS 56.4(2022):1327-1360.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kurganov,Alexander]的文章
[Qu,Zhuolin]的文章
[Wu,Tong]的文章
百度学术
百度学术中相似的文章
[Kurganov,Alexander]的文章
[Qu,Zhuolin]的文章
[Wu,Tong]的文章
必应学术
必应学术中相似的文章
[Kurganov,Alexander]的文章
[Qu,Zhuolin]的文章
[Wu,Tong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。