题名 | Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system |
作者 | |
通讯作者 | Kurganov,Alexander |
发表日期 | 2022-06-27
|
DOI | |
发表期刊 | |
ISSN | 2822-7840
|
EISSN | 2804-7214
|
卷号 | 56期号:4页码:1327-1360 |
摘要 | We extend the adaptive moving mesh (AMM) central-upwind schemes recently proposed in Kurganov et al. [Commun. Appl. Math. Comput. 3 (2021) 445-479] in the context of one- (1-D) and two-dimensional (2-D) Euler equations of gas dynamics and granular hydrodynamics, to the 1-D and 2-D Saint-Venant system of shallow water equations. When the bottom topography is nonflat, these equations form hyperbolic systems of balance laws, for which a good numerical method should be capable of preserving a delicate balance between the flux and source terms as well as preserving the nonnegativity of water depth even in the presence of dry or almost dry regions. Therefore, in order to extend the AMM central-upwind schemes to the Saint-Venant systems, we develop special positivity preserving reconstruction and evolution steps of the AMM algorithms as well as special corrections of the solution projection step in (almost) dry areas. At the same time, we enforce the moving mesh to be structured even in the case of complicated 2-D computational domains. We test the designed method on a number of 1-D and 2-D examples that demonstrate robustness and high resolution of the proposed numerical approach. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | NSFC["11771201","12111530004","12171226"]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000823640000008
|
出版者 | |
EI入藏号 | 20222712317856
|
EI主题词 | Equations of motion
; Gas dynamics
; Mesh generation
; Numerical methods
; One dimensional
; Topography
|
EI分类号 | Gas Dynamics:631.1.2
; Computer Applications:723.5
; Calculus:921.2
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Numerical Methods:921.6
; Materials Science:951
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85133270180
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/355682 |
专题 | 理学院_数学系 |
作者单位 | 1.Department of Mathematics,SUSTech Intl. Ctr. for Math. and Guangdong Prov. Key Lab. of Compl. Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mathematics,University of Texas at San Antonio,San Antonio,78249,United States |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Kurganov,Alexander,Qu,Zhuolin,Wu,Tong. Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS,2022,56(4):1327-1360.
|
APA |
Kurganov,Alexander,Qu,Zhuolin,&Wu,Tong.(2022).Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS,56(4),1327-1360.
|
MLA |
Kurganov,Alexander,et al."Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS 56.4(2022):1327-1360.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论