题名 | 石墨炔/石墨烯基催化剂催化氮气/氧气还原的研究 |
其他题名 | ELECTROCHEMICAL REDUCTION OF NITROGEN/OXYGEN BY GRAPHDIYNE AND GRAPHENE BASED CATALYSTS
|
姓名 | |
姓名拼音 | ZOU Haiyuan
|
学号 | 11849566
|
学位类型 | 博士
|
学位专业 | 0817 化学工程与技术
|
学科门类/专业学位类别 | 08 工学
|
导师 | |
导师单位 | 化学系
|
论文答辩日期 | 2022-05-18
|
论文提交日期 | 2022-07-12
|
学位授予单位 | 哈尔滨工业大学
|
学位授予地点 | 哈尔滨
|
摘要 | 电催化氮气还原(NRR)和氧气还原(ORR)可以将N2和O2分别转换为NH3和新能源,对人类的生存和可持续发展具有重要的意义。当前,工业上的合成氨技术是采用成熟的Haber-Bosch工艺,而该技术需要在高温(300-500 oC)和高压(> 200 atm)条件下才能进行,使得整个过程的年能耗占世界年能耗的2%,同时还伴随着每年近400兆吨的CO2排放。室温条件下的NRR技术相比能耗严重的Haber-Bosch合成氨工艺具有得天独厚的优势,但其目前的合成氨效率仍然无法满足实际应用的需求。此外,ORR中所使用的昂贵的铂基贵金属催化剂使新能源技术的开发成本一直高居不下,导致至今未能投入大规模应用中。基于此,合理设计开发高效廉价的NRR/ORR催化剂及对电解体系进一步的优化,不仅可以提高合成氨效率还可以降低新能源技术成本。本论文针对NRR效率的提高从催化剂调控和电解体系优化两方面入手构筑了新型石墨双炔(GDY)基NRR催化剂并开发了高压电解装置,有效促进了NRR的合成氨效率及其潜在的实际应用奠定了基础。此外,本文采取协同催化策略制备了过渡金属和多孔碳基复合的廉价高效ORR催化剂,对高活性非贵金属催化剂的开发提供新的思路。研究内容主要包括以下几个方面: 开发Cl2刻蚀策略对GDY进行减薄和掺杂,构筑出Cl掺杂的超薄GDY纳米片(Cl-GDY)。形貌表征显示了所制备的Cl-GDY纳米片仅有2 nm的厚度,而且结构分析证明了Cl元素的成功掺杂并在GDY基底上形成更多的缺陷并调控了材料的电子云密度。NRR实验表明,Cl-GDY催化剂在-0.45 V和-0.4 V相对可逆氢电极的电压下呈现出最佳的合成氨产率10.7 g h-1cm-2和最高的法拉第效率8.7%,该性能相比于纯GDY提高了近4倍。理论计算显示了Cl-GDY相比于纯GDY更有利于NRR过程,其对应的电势限制步骤的能量降低了0.11 eV。 催化活性中心的π电子反馈能力可以促进NRR缓慢的动力学过程。通过原位配位的方法合成一系列GDY负载的低价态金属单原子催化剂M SA/GDY(M = Cr、Mo、W、Mn、Re),从而对催化中心的π电子反馈能力进行优化。球差电镜和同步辐射表征证明了所制备的M SA/GDY具有单原子分散的低价态的M-C4金属中心。严谨的NRR实验表明所制备的M SA/GDY催化剂的氮还原性能从高所到低为:Re SA/GDY > Mo SA/GDY > Cr SA/GDY > W SA/GDY >> Mn SA/GDY(其中,Mn SA/GDY基本上没有氮还原催化性能)。值得注意的是,Re SA/GDY样品在-0.35 V相对可逆氢电极电压下呈现出其最佳的合成氨产率15.3 μg h-1 cm-2和法拉第效率8.07%,该性能进一步得到了同位素实验的证实。理论计算证明由于Re SA/GDY强的π电子反馈能力,使得*N2还原加氢到*NNH的能量需求仅为+0.42 eV,而这一步骤被认为是NRR的决速步骤。机理分析还揭示了Re SA/GDY催化剂上呈现一种新的NH3解离机制,其中N2或H2O可以在Re单原子上与NH3的进行共同吸附有效促进产物NH3的脱附,从而降低了NRR的远端和混合反应路径的能量输入。 通过单原子催化剂与高压电解反应釜的协同作用,同时调节NRR的动力学和热力学驱动力。NRR催化剂的构筑是通过简单的一步法合成的GDY负载的单原子催化剂M SA/GDY(M = Rh、Ru、Co),金属中心的配位结构为M-C4。在高的N2压力下,N2的溶解度升高,更多的N2分子可以传输到单原子催化剂的表面,从而提高了NRR的效率并且抑制了析氢副反应。在55 atm的N2压力下,Rh SA/GDY催化剂在-0.2 V下呈现出74.15 μg h-1 cm-2的合成氨产率、20.36%的法拉第效率以及0.35 mA的合成氨电流,该性能分别是常压条件下的7.3、4.9和9.2倍。通过充分纯化后的15N2同位素实验证明了实验中所得到的NH3确实来自于N2的还原。同样,所制备的Ru SA/GDY和Co SA/GDY催化剂在高压电催化体系中也呈现出较好的氮还原性能,表明提高N2的压力对催化剂的氮还原性能提高具有普适性。理论计算证明了高压条件下有利于N2在单原子催化剂上的吸附同时还降低NRR能垒。 将无定型CoNx均匀负载在三维多孔氮掺杂石墨烯气凝胶NGA上,所制备的CoNx/NGA复合物可以同时结合CoNx高催化活性和NGA的优异导电性的特点。此外,NGA基底的分等级多孔特性可以促进催化剂的传质和电子转移过程。基于此,所制备的CoNx/NGA在ORR中呈现出的起始电位为0.93 V,半波电位为0.83 V,极限电流密度为5.4 mA cm-2,该性能与贵金属铂催化剂相当。在锌空电池中,CoNx/NGA呈现出638 Wh kg-1的质量能量密度,表现出潜在的应用价值。
|
其他摘要 | Electrocatalytic N2 reduction reaction (NRR) and O2 reduction reaction (ORR) offer a green path for N2 to NH3 and O2 to new energy conversions, both of which are of great significance for human thrive and development. The present-day industrial ammonia is synthesized by a mature technology of the Harber-Bosch process, which requires harsh conditions of high temperature (300-500 ℃) and high pressure (> 200 atm). However, more than 2% of the global energy supply was inputted to the synthesis of ammonia, along with gigatons of annual CO2 emissions. Unlike the energy-intensive Haber-Bosch process, ammonia synthesis under ambient conditions over NRR shows many advantages, while its efficiency achieved by far is still too low to meet the practical command. On the other hand, the large-scale application of the new energy technology is hampered by the expensive noble Pt catalysts utilization on ORR. In this scenario, rational engineering of efficient but cost-effective catalysts with further optimizing the electrocatalytic systems play key roles in promoting the NRR efficiency and reducing the cost of new energy technology. In this thesis, we constructed graphdiyne (GDY) based electrocatalysts and developed a pressurized electrocatalytic system to boost the electrochemical ammonia production efficiency. In addition, the synergies between transition metal catalysts with porous graphene lever a superior ORR performance, which would pave an avenue for effective and no-precious ORR catalysts design. The following results are achieved: A novel Cl doped ultrathin GDY nanosheets (Cl-GDY) was nanostructured by Cl2 corrosion strategy, the process of which not only introduced a heteroatom of Cl dopant in the host but also etched the pristine GDY into ultrathin nanosheets. Morphology characterization showcased the ultrathin nature of as-prepared Cl-GDY with a thickness of ~2 nm. Moreover, structural analysis verified the success of Cl doping on GDY, leading to more defect formation and electron density modulation. Detailed electrochemical NRR experiments confirmed that the Cl-GDY catalyst affords a fairly high NH3 yield rate of 10.7 g h-1 cm-2 and Faradic efficiency of 8.7% at -0.45 V and -0.4 V versus reversible hydrogen electrode (RHE), respectively, which shows 4-fold enhancement than that of pristine GDY. Furthermore, density functional theory revealed that Cl doping is beneficial for N2 reduction on the GDY host by lowing the limiting potential by 0.11 eV to the pristine GDY. The π-backdonation ability of catalytic centers is vital to facilitating the sluggish kinetics of NRR. We put forward a versatile in-situ coordination approach to the synthesis of a series of single atoms anchored on GDY backbones (denoted as M SA/GDY, M=W, Mo, Re, Mn) to optimize the π-backdonation ability of metal centers. The microscopy and synchrotron-based X-ray absorption spectroscopy verify the atomically dispersed M-C4 moieties with a low metal valence state were well-established in the as-prepared M SA/GDY catalysts. Under rigorous ENRR protocol, an activity trend of Re SA/GDY > Mo SA/GDY > Cr SA/GDY > W SA/GDY >> Mn SA/GDY (no activity) was delivered. Remarkably, the Re SA/GDY displayed an optimal NH3 yield rate of 15.3 μg h-1 cm-2 with a Faradic efficiency of 8.07% at -0.35 V versus reversible hydrogen electrode, which is also quantitatively confirmed by the isotope 15N2 measurements. Furthermore, theoretical studies revealed that the strong M-to-N2 π-backdonation of Re SA/GDY renders a low energy requirement of +0.42 eV for the reductive hydrogenation of *N2 to *NNH, which is considered as the bottleneck of NRR. And a novel NH3 desorption mechanism through N2 co-adsorption on a Re-NH3 intermediate is proposed to facilitate the NH3 desorption from Re SA/GDY with a low energy input of +0.82 eV for the distal and mix pathways. By positive cooperation of metal single-atom catalysts with a pressurized reaction system, the chemical kinetics and thermodynamic driving forces of the NRR were regulated. The applied catalysts were the densely populated single metal atoms on GDY (M SA/GDY, M = Rh, Ru and Co) by using a mild and one-pot approach, which features M-C4 coordination. Under high N2 partial pressure, the dissolved N2 concentration in water increases and more N2 could be delivered to the electrode surface, leading to the amplified NRR activity with a simultaneously retarded hydrogen reduction reaction. As a result, a fairly high ammonia yield rate of 74.15 μg h-1 cm-2, a Faradic efficiency of 20.36% and an NH3 partial current density of 0.35 mA cm-2 were achieved for Rh SA/GDY at 55 atm of N2, which shows 7.3-folds, 4.9-folds and 9.2-folds enhancement in comparison with those obtained in ambient conditions. The isotope experiment using adequately cleaned 15N2 further ensured the ammonia electrosynthesis from N2. Additionally, similar NRR activity promotion was observed on the as-prepared Ru SA/GDY and Co SA/GDY under the pressurized electrolysis systems, demonstrating a general and cooperative strategy of elevating N2 partial pressure in reprogramming NRR. Theoretical calculations reveal that the N2 adsorption and kinetic activity for Rh SA/GDY are enhanced under the pressurized conditions, facilitating the ENRR process. Integration of amorphous CoNx with 3D porous nitrogen-doped graphene aerogel (NGA) forming the CoNx/NGA hybrid inherits both prominent catalytic activity of CoNx and excellent conductivity of NGA. Moreover, the hierarchical pores over the NGA substrate dramatically promote the catalyst's mass and electron transfer process. As a result, the CoNx/NGA exhibited an onset potential of 0.93 V, a half-wave potential of 0.83 V and a limited current density of 5.4 mA cm-2, which is comparable to the noble Pt/C catalysts. Furthermore, the CoNx/NGA drives a high mass-energy density of 638 wh kg-1 in a Zn-air battery, signifying its potential practical applications.
|
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2022-07
|
参考文献列表 | [[1]Wang L, Xia M, Wang H, et al. Greening Ammonia toward the Solar Ammonia Refinery[J]. Joule, 2018, 2(6): 1055-1074.[2]Seh Z W, Kibsgaard J, Dickens C F, et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design[J]. Science, 2017, 355(6321): eaad4998.[3]Chen H, Liu S, Liu X. Research Progress on Electrocatalytic Nitrogen Reduction Catalysts for Ammonia Synthesis[J]. Modern Chemical Industry, 2021, 41(7): 82-85.[4]Wang J, Kim J, Choi S, et al. A Review of Carbon-Supported Nonprecious Metals as Energy-Related Electrocatalysts[J]. Small Methods, 2020, 4(10), 2000621.[5]Yan X, Liu D, Cao H, et al. Nitrogen Reduction to Ammonia on Atomic-Scale Active Sites under Mild Conditions[J]. Small Methods, 2019, 3(9), 1800501.[6]Wang H-F, Chen R, Feng J, et al. Freestanding Non-Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions[J]. Chemelectrochem, 2018, 5(14): 1786-1804.[7]Wan Y, Xu J, Lv R. Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions[J]. Materials Today, 2019, 27: 69-90.[8]Cui X, Tang C, Zhang Q J. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369.[9]Skulason E, Bligaard T, Gudmundsdóttir S, et al. A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2 Reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245.[10]Li Z, Li B, Hu Y, et al. Highly-Dispersed and High-Metal-Density Electrocatalysts on Carbon Supports for the Oxygen Reduction Reaction: From Nanoparticles to Atomic-Level Architectures[J]. Materials Advances, 2022, 3(2): 779-809. [11]张婷, 孙晓红, 于宏兵, et al. 电催化氮气还原合成氨反应中抑制水解析氢竞争的研究进展[J]. 化工进展, 2021, 40(12): 6670-6687.[12]史清华, 沈腊珍, 苗震雨, et al. 单原子催化剂的制备及电催化应用研究进展[J]. 工业催化, 2021, 29(02): 17-23.[13]竹涛, 韩一伟, 刘帅, et al. 单原子位点催化剂及其电催化应用研究进展[J]. 化工进展, 1-19.[14]Liu H, Nosheen F, Wang X. Noble Metal Alloy Complex Nanostructures: Controllable Synthesis and Their Electrochemical Property[J]. Chemical Society Reviews, 2015, 44(10): 3056-3078.[15]Wang D, Azofra L M, Harb M, et al. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions[J]. Chemsuschem, 2018, 11(19): 3416-3422.[16]Zhang Y, Qiu W, Ma Y, et al. High-Performance Electrohydrogenation of N2 to NH3 Catalyzed by Multishelled Hollow Cr2O3 Microspheres under Ambient Conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544.[17]Han J, Liu Z, Ma Y, et al. Ambient N2 Fixation to NH3 at Ambient Conditions: Using Nb2O5 Nanofiber as a High-Performance Electrocatalyst[J]. Nano Energy, 2018, 52: 264-270.[18]Manh N, Seriani N, Gebauer R. Nitrogen Electrochemically Reduced to Ammonia with Hematite: Density-Functional Insights[J]. Physical Chemistry Chemical Physics, 2015, 17(22): 14317-14322.[19]Cui X, Wu W, Gutheil E. Numerical Study of the Airflow Structures in an Idealized Mouth-Throat under Light and Heavy Breathing Intensities Using Large Eddy Simulation[J]. Respiratory Physiology & Neurobiology, 2018, 248: 1-9.[20]Abghoui Y, Skúlason E. Onset Potentials for Different Reaction Mechanisms of Nitrogen Activation to Ammonia on Transition Metal Nitride Electro-Catalysts[J]. Catalysis Today, 2017, 286: 69-77.[21]Abghoui Y, Skúlason E. Electrochemical Synthesis of Ammonia Via Mars-Van Krevelen Mechanism on the (111) Facets of Group III-VII Transition Metal Mononitrides[J]. Catalysis Today, 2017, 286: 78-84.[22]Ren X, Cui G, Chen L, et al. Electrochemical N2 Fixation to NH3 under Ambient Conditions: Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chemical Communications, 2018, 54(61): 8474-8477.[23]Zhang X, Kong R, Du H, et al. Highly Efficient Electrochemical Ammonia Synthesis Via Nitrogen Reduction Reactions on a VN Nanowire Array under Ambient Conditions[J]. Chemical Communications, 2018, 54(42): 5323-5325.[24]Yang X, Nash J, Anibal J, et al. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391.[25]Cheng H, Ding L, Chen G, et al. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions[J]. Advanced Materials, 2018, 30(46): 1803694.[26]Kumar C, Subramanian V. Can Boron Antisites of BNNTs Be an Efficient Metal-Free Catalyst for Nitrogen Fixation?-a DFT Investigation[J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15377-15387.[27]于丰收, 周志翔, 张鲁华. 碳基纳米材料电催化氮气还原合成氨研究进展[J]. 科学通报, 2021, 66(24): 3111-3123.[28]Zhang L, Jia Y, Yan X, et al. Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction[J]. Small, 2018, 14(26): 1800235.[29]Yu X, Han P, Wei Z, et al. Boron-Doped Graphene for Electrocatalytic N2 Reduction[J]. Joule, 2018, 2(8): 1610-1622.[30]Song Y, Johnson D, Peng R, et al. A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia[J]. Science Advances, 2018, 4(4): e1700336.[31]Qiu W, Xie X, Qiu J, et al. High-Performance Artificial Nitrogen Fixation at Ambient Conditions Using a Metal-Free Electrocatalyst[J]. Nature Communications, 2018, 9(1): 3485.[32]Zhao Z, Xu Z, Chen X. Progress on Applications of Single-Atom Catalysts in Electrocatalytic Reduction[J]. Modern Chemical Industry, 2021, 41(5): 45-48.[33]赵中昆, 许志志, 陈鑫. 单原子催化剂在电催化还原领域的研究进展 %J 现代化工[J]. 2021, 41(05): 45-48.[34]Lang R, Du X, Huang Y, et al. Single-Atom Catalysts Based on the Metal-Oxide Interaction[J]. Chemical Reviews, 2020, 120(21):11986-12043.[35]Zhao J, Chen Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study[J]. Journal of the American Chemical Society, 2017, 139(36): 12480-12487.[36]Wei Z, Zhang Y, Wang S, et al. Fe-Doped Phosphorene for the Nitrogen Reduction Reaction[J]. Journal of Materials Chemistry A, 2018, 6(28): 13790-13796.[37]Su J, Ge R, Dong Y, et al. Recent Progress in Single-Atom Electrocatalysts: Concept, Synthesis, and Applications in Clean Energy Conversion[J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042.[38]Lai W, Miao Z, Wang Y, et al. Atomic-Local Environments of Single-Atom Catalysts: Synthesis, Electronic Structure, and Activity[J]. Advanced Energy Materials, 2019, 9(43): 1900722.[39]Wang X, Wang W, Qiao M, et al. Atomically Dispersed Au1 Catalyst Towards Efficient Electrochemical Synthesis of Ammonia[J]. Science Bulletin, 2018, 63(19): 1246-1253.[40]Qin Q, Heil T, Antonietti M, et al. Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen[J]. Small Methods, 2018, 2(12): 1800202.[41]Geng Z, Liu Y, Kong X, et al. Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts[J]. Advanced Materials, 2018, 30(40): 1803498.[42]Tao H, Choi C, Ding L, et al. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction[J]. Chem, 2019, 5(1): 204-214.[43]Han L, Liu X, Chen J, et al. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation[J]. Angewandte Chemie-International Edition, 2019, 58(8): 2321-2325.[44]Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential[J]. Nature Communications, 2019, 10: 341.[45]Zhang Q, Guan J. Single-Atom Catalysts for Electrocatalytic Applications[J]. Advanced Functional Materials, 2020, 30(31): 2000768. [46]Chen Y, Liu H, Ha N, et al. Revealing Nitrogen-Containing Species in Commercial Catalysts Used for Ammonia Electrosynthesis[J]. Nature Catalysis, 2020, 3(12): 1055-1061.[47]Narita N, Nagai S, Suzuki S, et al. Optimized Geometries and Electronic Structures of Graphyne and Its Family[J]. Physical Review B, 1998, 58(16): 11009.[48]Li G, Li Y, Liu H, et al. Architecture of Graphdiyne Nanoscale Films[J]. Chemical Communications, 2010, 46(19): 3256-3258.[49]李加强, 张锦. 石墨炔负载金属原子催化剂研究进展[J]. 科学通报, 2019, 64(35): 3649-3664.[50]Lu T, He J, Li R, et al. Adjusting the Interface Structure of Graphdiyne by H and F Co-Doping for Enhanced Capacity and Stability in Li-Ion Battery[J]. Energy Storage Materials, 2020, 29: 131-139.[51]Gao X, Li J, Du R, et al. Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell[J]. Advanced Materials, 2017, 29(9): 1605308.[52]Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface[J]. Journal of the American Chemical Society, 2017, 139(8): 3145-3152.[53]He J, Wang N, Cui Z, et al. Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries[J]. Nature Communications, 2017, 8: 1172.[54]Lv Q, Wang N, Si W, et al. Pyridinic Nitrogen Exclusively Doped Carbon Materials as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Batteries[J]. Applied Catalysis B: Environmental, 2020, 261: 118234.[55]Yang Z, Shen X, Wang N, et al. Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2608-2617.[56]Wang N, Li X, Tu Z, et al. Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage[J]. Angewandte Chemie-International Edition, 2018, 130(15): 4032-4037.[57]Gao X, Zhu Y, Yi D, et al. Ultrathin Graphdiyne Film on Graphene through Solution-Phase Van Der Waals Epitaxy[J]. Science Advances, 2018, 4(7): eaat6378.[58]Yin C, Li J, Li T, et al. Catalyst-Free Synthesis of Few-Layer Graphdiyne Using a Microwave-Induced Temperature Gradient at a Solid/Liquid Interface[J]. Advanced Functional Materials, 2020, 30(23): 2001396.[59]Li G, Li Y, Qian X, et al. Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission[J]. Journal of Physical Chemistry C, 2011, 115(6): 2611-2615.[60]Gao X, Ren H, Zhou J, et al. Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation[J]. Chemistry of Materials, 2017, 29(14): 5777-5781.[61]Zuo Z, Shang H, Chen Y, et al. A Facile Approach for Graphdiyne Preparation under Atmosphere for an Advanced Battery Anode[J]. Chemical Communications, 2017, 53(57): 8074-8077.[62]Kong Y, Li J, Zeng S, et al. Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology[J]. Chem, 2020, 6(8): 1933-1951.[63]Chang Y, Zhang C, Lu X, et al. Graphdiyene Enables Ultrafine Cu Nanoparticles to Selectively Reduce CO2 to C2+ Products[J]. Nano Research, 2022, 15(1): 195-201.[64]Rong W, Zou H, Zang W, et al. Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters During CO/CO2 Electroreduction[J]. Angewandte Chemie-International Edition, 2021, 60(1): 466-472.[65]Lin L, Chen Z, Chen W. Single Atom Catalysts by Atomic Diffusion Strategy[J]. Nano Research, 2021, 14(12): 4398-4416.[66]Xue Y, Huang B, Yi Y, et al. Anchoring Zero Valence Single Atoms of Nickel and Iron on Graphdiyne for Hydrogen Evolution[J]. Nature Communications, 2018, 9: 1460.[67]Yu H, Hui L, Xue Y, et al. 2D Graphdiyne Loading Ruthenium Atoms for High Efficiency Water Splitting[J]. Nano Energy, 2020, 72: 104667.[68]Xie W, Zhang S, Ni Y, et al. Graphdiyne-Stabilized Silver Nanoparticles as an Efficient Electrocatalyst for CO2 Reduction[J]. Advanced Energy and Sustainability Research, 2021, 2(8): 2100037. [69]Lv Y, Wu X, Lin H, et al. A Novel Carbon Support: Few-Layered Graphdiyne-Decorated Carbon Nanotubes Capture Metal Clusters as Effective Metal-Supported Catalysts[J]. Small, 2021, 17(12): 2006442.[70]Si W, Yang Z, Wang X, et al. Fe, N-Codoped Graphdiyne Displaying Efficient Oxygen Reduction Reaction Activity[J]. Chemsuschem, 2019, 12(1): 173-178.[71]Yin X, Wang H, Tang S, et al. Engineering the Coordination Environment of Single-Atom Platinum Anchored on Graphdiyne for Optimizing Electrocatalytic Hydrogen Evolution[J]. Angewandte Chemie-International Edition, 2018, 57(30): 9382-9386.[72]Guo Y, Liu J W, Yang Q, et al. Regulating Nitrogenous Adsorption and Desorption on Pd Clusters by the Acetylene Linkages of Hydrogen Substituted Graphdiyne for Efficient Electrocatalytic Ammonia Synthesis[J]. Nano Energy, 2021, 86: 106099.[73]Li M Y, Cui Y, Zhang X L, et al. Screening a Suitable Mo Form Supported on Graphdiyne for Effectively Electrocatalytic N2 Reduction Reaction: From Atomic Catalyst to Cluster Catalyst[J]. Journal of Physical Chemistry Letters, 2020, 11(19): 8128-8137.[74]Hui L, Xue Y, Yu H, et al. Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683.[75]Yu H, Xue Y, Hui L, et al. Graphdiyne-Based Metal Atomic Catalysts for Synthesizing Ammonia[J]. National Science Review, 2021, 8(8): nwaa213.[76]Wang W, Lv F, Lei B, et al. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis[J]. Advanced Materials, 2016, 28(46): 10117-10141.[77]Chen C, Kang Y, Huo Z, et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces[J]. Science, 2014, 343(6177): 1339-1343.[78]Liu L, Yang X, Ma N, et al. Scalable and Cost-Effective Synthesis of Highly Efficient Fe2N-Based Oxygen Reduction Catalyst Derived from Seaweed Biomass[J]. Small, 2016, 12(10): 1295-1301.[79]Deng D, Yu L, Chen X, et al. Iron Encapsulated within Pod-Like Carbon Nanotubes for Oxygen Reduction Reaction[J]. Angewandte Chemie-International Edition, 2013, 52(1): 371-375.[80]Zhang W, Wu Z, Jiang H, et al. Nanowire-Directed Templating Synthesis of Metal-Organic Framework Nanofibers and Their Derived Porous Doped Carbon Nanofibers for Enhanced Electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(41): 14385-14388.[81]Yang Z, Yao Z, Li G, et al. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction[J]. ACS Nano, 2012, 6(1): 205-211.[82]Zhao Y, Wan J, Yao H, et al. Few-Layer Graphdiyne Doped with sp-Hybridized Nitrogen Atoms at Acetylenic Sites for Oxygen Reduction Electrocatalysis[J]. Nature Chemistry, 2018, 10(9): 924-931.[83]Yang J, Sun H, Liang H, et al. A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene[J]. Advanced Materials, 2016, 28(23): 4606-4613.[84]Peng Y, Lu B, Chen S. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage[J]. Advanced Materials, 2018, 30(48): 1801995.[85]Chen Y, Ji S, Wang Y, et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction[J]. Angewandte Chemie-International Edition, 2017, 56(24): 6937-6941.[86]Li F, Han G, Noh H, et al. Boosting Oxygen Reduction Catalysis with Abundant Copper Single Atom Active Sites[J]. Energy & Environmental Science, 2018, 11(8): 2263-2269.[87]Yuan K, Luetzenkirchen-Hecht D, Li L, et al. Boosting Oxygen Reduction of Single Iron Active Sites Via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination[J]. Journal of the American Chemical Society, 2020, 142(5): 2404-2412.[88]Zhang Z, Zhao X, Xi S, et al. Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn-Air Battery and Self-Driven Water Splitting[J]. Advanced Energy Materials, 2020, 10(48): 2002896.[89]Liu R, Xu G. Comparison of Electrochemical Synthesis of Ammonia by Using Sulfonated Polysulfone and Nafion Membrane with Sm1.5Sr0.5NiO4[J]. Chinese Journal of Chemistry, 2010, 28(2): 139-142.[90]Lan R, Irvine J T, Tao S. Synthesis of Ammonia Directly from Air and Water at Ambient Temperature and Pressure[J]. Scientific Reports, 2013, 3: 1145.[91]Chen S, Perathoner S, Ampelli C, et al. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst[J]. Angewandte Chemie-International Edition, 2017, 129(10): 2743-2747.[92]Kim K, Yoo C, Kim J, et al. Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure[J]. Journal of The Electrochemical Society, 2016, 163(14): F1523- F1526.[93]Guo C, Ran J, Vasileff A, et al. Rational Design of Electrocatalysts and Photo(Electro) Catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56.[94]Andersen S Z, Colic V, Yang S, et al. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements[J]. Nature, 2019, 570(7762): 504-508.[95]Tang C, Qiao S. How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully[J]. Chemical Society Reviews, 2019, 48(12): 3166-3180.[96]Liu Y, Han M, Xiong Q, et al. Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In-Operando Created Li-S Interactions on MoS2 Electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1803935.[97]Zhang L, Ji X, Ren X, et al. Electrochemical Ammonia Synthesis Via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies[J]. Advanced Materials, 2018, 30(28): 1800191.[98]Hao Y, Guo Y, Chen L, et al. Promoting Nitrogen Electroreduction to Ammonia with Bismuth Nanocrystals and Potassium Cations in Water[J]. Nature Catalysis, 2019, 2(5): 448-456.[99]Zhao S, Lu X, Wang L, et al. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions[J]. Advanced Materials, 2019, 31(13): 1805367.[100]Zhang L, Ding L, Chen G, et al. Ammonia Synthesis under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets[J]. Angewandte Chemie-International Edition, 2019, 58(9): 2612-2616.[101]Yu H, Xue Y, Li Y. Graphdiyne and Its Assembly Architectures: Synthesis, Functionalization, and Applications[J]. Advanced Materials, 2019, 31(42): 1803101.[102]Zuo Z, Wang D, Zhang J, et al. Synthesis and Applications of Graphdiyne-Based Metal-Free Catalysts[J]. Advanced Materials, 2019, 31(13): 1803762.[103]Zhou J, Li J, Liu Z, et al. Exploring Approaches for the Synthesis of Few-Layered Graphdiyne[J]. Advanced Materials, 2019, 31(42): 1803758.[104]Du H, Zhang Z, He J, et al. A Delicately Designed Sulfide Graphdiyne Compatible Cathode for High-Performance Lithium/Magnesium-Sulfur Batteries[J]. Small, 2017, 13(44): 1702277.[105]Yan H, Yu P, Han G, et al. High-Yield and Damage-Free Exfoliation of Layered Graphdiyne in Aqueous Phase[J]. Angewandte Chemie-International Edition, 2019, 58(3): 746-750.[106]Zhao Y, Yang N, Yao H, et al. Stereodefined Codoping of sp-N and S Atoms in Few-Layer Graphdiyne for Oxygen Evolution Reaction[J]. Journal of the American Chemical Society, 2019, 141(18): 7240-7244.[107]Gao Y, Cai Z, Wu X, et al. Graphdiyne-Supported Single-Atom-Sized Fe Catalysts for the Oxygen Reduction Reaction: DFT Predictions and Experimental Validations[J]. ACS Catalysis, 2018, 8(11): 10364-10374.[108]Bursten B E, Callstrom M R, Jolly C A, et al. Importance of Steric Requirements Relative to Electronic Contributions in Bicycloalkyl-Substituted Titanocene Dichlorides[J]. Organometallics, 1994, 13(1): 127-133.[109]Wang N, He J, Tu Z, et al. Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage[J]. Angewandte Chemie-International Edition, 2017, 56(36): 10740-10745.[110]Kou Z, Meng T, Guo B, et al. A Generic Conversion Strategy: From 2D Metal Carbides (MxCy) to M-Self-Doped Graphene toward High-Efficiency Energy Applications[J]. Advanced Functional Materials, 2017, 27(8): 1604904.[111]Hong Z, Shen B, Chen Y, et al. Enhancement of Photocatalytic H2 Evolution over Nitrogen-Deficient Graphitic Carbon Nitride[J]. Journal of Materials Chemistry A, 2013, 1(38): 11754-11761.[112]He J, Wang N, Yang Z, et al. Fluoride Graphdiyne as a Free-Standing Electrode Displaying Ultra-Stable and Extraordinary High Li Storage Performance[J]. Energy & Environmental Science, 2018, 11(10): 2893-2903.[113]Lv C, Qian Y, Yan C, et al. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions[J]. Angewandte Chemie-International Edition, 2018, 57(32): 10246-10250.[114]Liu Y, Su Y, Quan X, et al. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191.[115]Chen G, Cao X, Wu S, et al. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions Via a Li+ Incorporation Strategy[J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774.[116]Xia L, Yang J, Wang H, et al. Sulfur-Doped Graphene for Efficient Electrocatalytic N2-to-NH3 Fixation[J]. Chemical Communications, 2019, 55(23): 3371-3374.[117]Liu J, Ma X, Li Y, et al. Heterogeneous Fe3 Single-Cluster Catalyst for Ammonia Synthesis Via an Associative Mechanism[J]. Nature Communications, 2018, 9: 1610.[118]Zhu W, Michalsky R, Metin O, et al. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135(45): 16833-16836.[119]Hoskuldsson A B, Abghoui Y, Gunnarsdottir A B, et al. Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10327-10333.[120]Van Der Ham C J M, Koper M T M, Hetterscheid D G H. Challenges in Reduction of Dinitrogen by Proton and Electron Transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.[121]Kibsgaard J, Nørskov J K, Chorkendorff I. The Difficulty of Proving Electrochemical Ammonia Synthesis[J]. ACS Energy Letters, 2019, 4(12): 2986-2988.[122]Lan J, Peng M, Liu P, et al. Scalable Synthesis of Nanoporous Boron for High Efficiency Ammonia Electrosynthesis[J]. Materials Today, 2020, 38: 58-66.[123]Liu X, Jiao Y, Zheng Y, et al. Building up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts[J]. Journal of the American Chemical Society, 2019, 141(24): 9664-9672.[124]Yin J, Li J, Wang G, et al. Dinitrogen Functionalization Affording Chromium Hydrazido Complex[J]. Journal of the American Chemical Society, 2019, 141(10): 4241-4247.[125]Gu J, Hsu C, Bai L, et al. Atomically Dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094.[126]Kresse G, Hafner J. Abinitio Molecular-Dynamics for Liquid-Metals[J]. Physical Review B, 1993, 47(1): 558-561.[127]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865.[128]Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Physical Review B, 1999, 59(3): 1758-1775.[129]Peterson A A, Abild F, Studt F, et al. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315.[130]Sanville E, Kenny S D, Smith R, et al. Improved Grid-Based Algorithm for Bader Charge Allocation[J]. Journal of Computational Chemistry, 2007, 28(5): 899-908.[131]Maintz S, Deringer V L, Tchougreeff A L, et al. Lobster: A Tool to Extract Chemical Bonding from Plane-Wave Based DFT[J]. Journal of Computational Chemistry, 2016, 37(11): 1030-1035.[132]Fleisch T H, Mains G J. An XPS Study of the UV Reduction and Photochromism of MoO3 and WO3[J]. Journal of Chemical Physics, 1982, 76(2): 780-786. [133]Brockawik E, Haber J, Ungier L. Electronic Structure of Rhenium Oxides[J]. Journal of Physics and Chemistry of Solids, 1981, 42(3): 203-208.[134]Jugnet Y, Prakash N S, Porte L, et al. Photoelectron Diffraction on Clean W(110) Surface and Bulk 4f Core Levels[J]. Physical Review B, 1988, 37(14): 8066-8071.[135]Franzen H F, Umaña M X, Mccreary J R, et al. XPS Spectra of Some Transition Metal and Alkaline Earth Monochalcogenides[J]. Journal of Solid State Chemistry, 1976, 18(4): 363-368.[136]Mandale A B, Badrinarayanan S, Date S K, et al. Photoelectron-Spectroscopic Study of Nickel, Manganese and Cobalt Selenides[J]. Journal of Electron Spectroscopy and Related Phenomena, 1984, 33(1): 61-72.[137]Zang W, Yang T, Zou H, et al. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction[J]. ACS Catalysis, 2019, 9(11): 10166-10173.[138]Lv C, Yan C, Chen G, et al. An Amorphous Noble-Metal-Free Electrocatalyst That Enables Nitrogen Fixation under Ambient Conditions[J]. Angewandte Chemie-International Edition, 2018, 57(21): 6073-6076.[139]Lin Y, Zhang S, Xue Z, et al. Boosting Selective Nitrogen Reduction to Ammonia on Electron-Deficient Copper Nanoparticles[J]. Nature Communications, 2019, 10(1): 4380.[140]Shi M M, Bao D, Wulan B R, et al. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions[J]. Advanced Materials, 2017, 29(17): 1606550.[141]Liu S, Qian T, Wang M, et al. Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis[J]. Nature Catalysis, 2021, 4(4): 322-331.[142]Kang J, Wei Z, Li J. Graphyne and Its Family: Recent Theoretical Advances[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2692-2706.[143]Li M, Cui Y, Zhang X, et al. Screening a Suitable Mo Form Supported on Graphdiyne for Effectively Electrocatalytic N2 Reduction Reaction: From Atomic Catalyst to Cluster Catalyst[J]. The Journal of Physical Chemistry Letters, 2020, 11(19): 8128-8137. [144]He T, Puente Santiago A R, Du A. Atomically Embedded Asymmetrical Dual-Metal Dimers on N-Doped Graphene for Ultra-Efficient Nitrogen Reduction Reaction[J]. Journal of Catalysis, 2020, 388: 77-83.[145]Jasin Arachchige L, Xu Y, Dai Z, et al. Theoretical Investigation of Single and Double Transition Metals Anchored on Graphyne Monolayer for Nitrogen Reduction Reaction[J]. The Journal of Physical Chemistry C, 2020, 124(28): 15295-15301.[146]Feng Z, Tang Y, Chen W, et al. Graphdiyne Coordinated Transition Metals as Single-Atom Catalysts for Nitrogen Fixation[J]. Physical Chemistry Chemical Physics, 2020, 22(17): 9216-9224.[147]Li Q, Qiu S, He L, et al. Impact of H-Termination on the Nitrogen Reduction Reaction of Molybdenum Carbide as an Electrochemical Catalyst[J]. Physical Chemistry Chemical Physics, 2018, 20(36): 23338-23343.[148]Li Q, Liu C, Qiu S, et al. Exploration of Iron Borides as Electrochemical Catalysts for the Nitrogen Reduction Reaction[J]. Journal of Materials Chemistry A, 2019, 7(37): 21507-21513.[149]Zhu X, Jr., Mou S, Peng Q, et al. Aqueous Electrocatalytic N2 Reduction for Ambient NH3 Synthesis: Recent Advances in Catalyst Development and Performance Improvement[J]. Journal of Materials Chemistry A, 2020, 8(4): 1545-1556.[150]Yao Y, Zhu S, Wang H, et al. A Spectroscopic Study of Electrochemical Nitrogen and Nitrate Reduction on Rhodium Surfaces[J]. Angewandte Chemie-International Edition, 2020, 59(26): 10479-10483.[151]Cheng H, Cui P, Wang F, et al. High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium[J]. Angewandte Chemie-International Edition, 2019, 58(43): 15541-15547.[152]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1997, 78(7): 1396-1396.[153]Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.[154]Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.[155]Norskov J K, Rossmeisl J, Logadottir A, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode[J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.[156]Medas K M, Lesch R W, Edioma F B, et al. Metal-Catalyzed Cyclotrimerization Reactions of Cyanamides: Synthesis of 2-Aryl-Alpha-Carbolines[J]. Organic Letters, 2020, 22(8): 3135-3139.[157]Chen Z, Vorobyeva E, Mitchell S, et al. A Heterogeneous Single-Atom Palladium Catalyst Surpassing Homogeneous Systems for Suzuki Coupling[J]. Nature Nanotechnology, 2018, 13(8): 702-705.[158]Shen J Y, Adnot A, Kaliaguine S. An Esca Study of the Interaction of Oxygen with the Surface of Ruthenium[J]. Applied Surface Science, 1991, 51(1-2): 47-60.[159]Okamoto Y, Ishida N, Imanaka T, et al. Active States of Rhodium in Rhodium Exchanged Y-Zeolite Catalysts for Hydrogenation of Ethylene and Acetylene and Dimerization of Ethylene Studied with X-Ray Photoelectron-Spectroscopy[J]. Journal of Catalysis, 1979, 58(1): 82-94.[160]Fan K, Zou H, Lu Y, et al. Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation[J]. ACS Nano, 2018, 12(12): 12369-12379.[161]Kordali V, Kyriacou G, Lambrou C. Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell[J]. Chemical Communications, 2000, 17: 1673-1674.[162]Li X, Li T, Ma Y, et al. Boosted Electrocatalytic N2 Reduction to NH3 by Defect-Rich MoS2 Nanoflower[J]. Advanced Energy Materials, 2018, 8(30): 1801357.[163]Surrnto B H R, Wang D, Azofra L M, et al. MoS2 Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia[J]. ACS Energy Letters, 2019, 4(2): 430-435.[164]Liu H, Han S-H, Zhao Y, et al. Surfactant-Free Atomically Ultrathin Rhodium Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. [165]Guo Y, Yao Z, Timmer B J J, et al. Boosting Nitrogen Reduction Reaction by Bio-Inspired Femos Containing Hybrid Electrocatalyst over a Wide pH Range[J]. Nano Energy, 2019, 62: 282-288.[166]Zheng J, Lyu Y, Qiao M, et al. Tuning the Electron Localization of Gold Enables the Control of Nitrogen-to-Ammonia Fixation[J]. Angewandte Chemie-International Edition, 2019, 58(51): 18604-18609.[167]Li S, Bao D, Shi M, et al. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support Towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Advanced Materials, 2017, 29(33): 1700001.[168]Chen P, Zhang N, Wang S, et al. Interfacial Engineering of Cobalt Sulfide/Graphene Hybrids for Highly Efficient Ammonia Electrosynthesis[J]. Proc Natl Acad Sci U S A, 2019, 116(14): 6635-6640.[169]Yao J, Boo D, Zhang Q, et al. Tailoring Oxygen Vacancies of BiVO4 toward Highly Efficient Noble-Metal-Free Electrocatalyst for Artificial N2 Fixation under Ambient Conditions[J]. Small Methods, 2019, 3(6): 1800333.[170]Ling C, Niu X, Li Q, et al. Metal-Free Single Atom Catalyst for N2 Fixation Driven by Visible Light[J]. Journal of the American Chemical Society, 2018, 140(43): 14161-14168.[171]Anderson J S, Rittle J, Peters J C. Catalytic Conversion of Nitrogen to Ammonia by an Iron Model Complex[J]. Nature, 2013, 501(7465): 84-87.[172]杨子凤, 焦芮, 张万里, et al. 燃料电池阴极氧还原非铂类催化剂研究进展[J]. 化工新型材料, 2019, 47(11): 227-231.[173]李静, 冯欣, 魏子栋. 铂基燃料电池氧还原反应催化剂研究进展[J]. 电化学, 2018, 24(06): 589-601.[174]Dutta S, Indra A, Feng Y, et al. Promoting Electrocatalytic Overall Water Splitting with Nanohybrid of Transition Metal Nitride-Oxynitride[J]. Applied Catalysis B: Environmental, 2019, 241: 521-527.[175]Ray C, Lee S C, Jin B, et al. Conceptual Design of Three-Dimensional Con/Ni3N-Coupled Nanograsses Integrated on N-Doped Carbon to Serve as Efficient and Robust Water Splitting Electrocatalysts[J]. Journal of Materials Chemistry A, 2018, 6(10): 4466-4476.[176]Chen P, Xu K, Fang Z, et al. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction[J]. Angewandte Chemie-International Edition, 2015, 54(49): 14710-14714.[177]Chong L, Wen J, Kubal J, et al. Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks[J]. Science, 2018, 362(6420): 1276-1281.[178]Li L, He J, Wang Y, et al. Metal-Organic Frameworks: a Promising Platform for Constructing Non-Noble Electrocatalysts for the Oxygen-Reduction Reaction[J]. Journal of Materials Chemistry A, 2019, 7(5): 1964-1988.[179]Joung D, Gu T, Cho J. Tunable Optical Transparency in Self Assembled Three-Dimensional Polyhedral Graphene Oxide[J]. ACS Nano, 2016, 10(10): 9586-9594.[180]Hu C, Xue J, Dong L, et al. Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams[J]. ACS Nano, 2016, 10(1): 1325-1332.[181]Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-Doped Carbon Nanomaterials as Non-Metal Electrocatalysts for Water Oxidation[J]. Nature Communications, 2013, 4: 2390.[182]Dou S, Tao L, Huo J, et al. Etched and Doped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis[J]. Energy & Environmental Science, 2016, 9(4): 1320-1326. |
所在学位评定分委会 | 化学系
|
国内图书分类号 | O643.36
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/355721 |
专题 | 理学院_化学系 |
推荐引用方式 GB/T 7714 |
邹海远. 石墨炔/石墨烯基催化剂催化氮气/氧气还原的研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11849566-邹海远-化学系.pdf(29166KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[邹海远]的文章 |
百度学术 |
百度学术中相似的文章 |
[邹海远]的文章 |
必应学术 |
必应学术中相似的文章 |
[邹海远]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论