中文版 | English
题名

高核稀土簇合物的调控合成与磁性研究

其他题名
RATIONAL SYNTHESIS AND MAGNETICSTUDIES OF HIGH-NUCLEARITY LANTHANIDE CLUSTERS
姓名
姓名拼音
HUANG Weiming
学号
11930109
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
郑智平
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-07-11
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,多核稀土簇合物以其独特的空间拓扑结构和光、电、磁、催化性能受到人们广泛的关注,已经成为团簇研究中最热门的课题之一。 在多核稀土簇合物的研究中, 精确控制复杂分子结构的能力对于开发其功能化应用是至关重要的。 本论文中,以立方烷形[Er4(μ3-OH)4]8+结构单元的组装模式为例,我们提出了一种使用明确阴离子模板指导高核稀土簇合物设计组装的思路。 其中:以 Cl-或 Br-离子为模板, 五个[Er4(μ3-OH)4]8+结构单元组装形成轮状[Er15(μ3-H)20]25+结构单元; 以 I-离子为模板, 四个[Er4(μ3-OH)4]8+结构单元组装形成轮状Er12(μ3-OH)16]20+结构单元; 以 I-与 CO32-离子为模板, 十二个[Er4(μ3-OH)4]8+结构单元组装形成船形[Er34(μ3-OH)48]56+结构单元; 以 I-、 CO32-与 NO3-离子为模板, 十八个[Er4(μ3-OH)4]8+结构单元组装形成碗状[Er48(μ3-OH)72]72+结构单元; 以 I-、 CO32-与 NO3-离子为模板 且 在 溶 剂 热 条 件 下 , 二 十 四 个 [Er4(μ3-OH)4]8+结 构 单 元 组 装 形 成 笼 状[Er60(μ3-OH)96]84+结构单元。 这一系列多核稀土簇合物不仅提供了研究多核稀土簇合物磁构效应的思路,而且揭示了一种阴离子导向的逐步组装机理。
这项工作提供了一个非常罕见的定向设计与可控合成高核稀土簇合物的例
子,有望指导未来具有复杂结构的超分子簇合物的自组装合成。
 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1]洪茂椿,陈荣,梁文平.21 世纪无机化学[M].科学出版社,2005.

[2] SHI D, YANG X, CHEN H, et al. Large Ln42 coordination nanorings: NIRluminescence sensing of metal ions and nitro explosives[J]. Chem. Commun., 2019,55(87):13116-13119.

[3] QIN L, YU Y-Z, LIAO P-Q, et al. A “Molecular Water Pipe”: A Giant TubularCluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation[J].Adv. Mater., 2016, 28(48):10772-10779.

[4] LIU J-L, CHEN Y-C, GUO F-S, et al. Recent advances in the design of magneticmolecules for use as cryogenic magnetic coolants[J]. Coord. Chem. Rev., 2014,281:26-49.

[5] PAN Z-H, WENG Z-Z, KONG X-J, et al. Lanthanide-containing clusters forcatalytic water splitting and CO2 conversion[J]. Coord. Chem. Rev., 2022,457:214419.

[6] PLAKATOURAS J C, BAXTER I, HURSTHOUSE M B, et al. Synthesis andstructural characterisation of two novel Gdβ-diketonates [Gd4(µ3-OH)4(µ2-H2O)2(H2O)4(hfpd)8]·2C6H6·H2O 1 and [Gd(hfpd)3(Me2CO)(H2O)] 2(hfpd–H =1,1,1,5,5,5-hexafluoropentane-2,4-dione)[J]. J. Chem. Soc., Chem. Commun., 1994,(21):2455-2456.

[7] ZHENG X-Y, XIE J, KONG X-J, et al. Recent advances in the assembly of highnuclearity lanthanide clusters[J]. Coord. Chem. Rev., 2019, 378:222 -236.

[8] ZHENG Z. Ligand-controlled self-assembly of polynuclear lanthanide–oxo/hydroxocomplexes: from synthetic serendipity to rational supramolecular design[J]. Chem.Commun., 2001, (24):2521-2529.

[9] WANG R, SELBY H D, LIU H, et al. Halide-Templated Assembly of PolynuclearLanthanide-Hydroxo Complexes[J]. Inorg. Chem., 2002, 41(2):278-286.

[10] ZHENG X-Y, PENG J-B, KONG X-J, et al. Mixed-anion templated cage-likelanthanide clusters: Gd27 and Dy27[J]. Inorg. Chem. Front., 2016, 3(2):320-325.

[11] DU M-H, ZHENG X-Y, KONG X-J, et al. Synthetic Protocol for Assembling GiantHeterometallic Hydroxide Clusters from Building Blocks: Rational Design andEfficient Synthesis[J]. Matter, 2020, 3(4):1334-1349.

[12] CHEN W-P, LIAO P-Q, JIN P-B, et al. The Gigantic Ni36Gd102 Hexagon: A SulfateTemplated “Star-of-David” for Photocatalytic CO2 Reduction and MagneticCooling[J]. J. Am. Chem. Soc., 2020, 142(10):4663-4670.

[13] CHEN X-Y, YANG X, HOLLIDAY B J. Metal-Controlled Assembly of NearInfrared-Emitting Pentanuclear Lanthanide β-Diketone Clusters[J]. Inorg. Chem.,2010, 49(6):2583-2585.

[14] WANG R, CARDUCCI M D, ZHENG Z. Direct Hydrolytic Route to MolecularOxo−Hydroxo Lanthanide Clusters[J]. Inorg. Chem., 2000, 39(9):1836 -1837.

[15] WANG R, ZHENG Z, JIN T, et al. Coordination Chemistry of Lanthanides at “High”pH: Synthesis and Structure of the Pentadecanuclear Complex of Europium(III) withTyrosine[J]. Angew. Chem. Int. Ed., 1999, 38(12):1813-1815.

[16] ZHOU G-J, CHEN W-P, YU Y, et al. Filling the Missing Links of M3n Prototype 3d-4f and 4f Cyclic Coordination Cages: Syntheses, Structures, and MagneticProperties of the Ni10Ln5 and the Er3n Wheels[J]. Inorg. Chem., 2017, 56(21):12821-12829.参考文献67

[17] HUANG W, ZHANG Z, WU Y, et al. A systematic study of halide-template effectsin the assembly of lanthanide hydroxide cluster complexes with histidine[J]. Inorg.Chem. Front., 2021, 8(1):26-34.

[18] GUO F-S, CHEN Y-C, MAO L-L, et al. Anion-Templated Assembly andMagnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel[J].Chem. Eur. J., 2013, 19(44):14876-14885.

[19] PENG J-B, KONG X-J, ZHANG Q-C, et al. Beauty, Symmetry, and MagnetocaloricEffect—Four-Shell Keplerates with 104 Lanthanide Atoms[J]. J. Am. Chem. Soc.,2014, 136(52):17938-17941.

[20] ZHENG X-Y, JIANG Y-H, ZHUANG G-L, et al. A Gigantic Molecular Wheel ofGd140: A New Member of the Molecular Wheel Family[J]. J. Am. Chem. Soc., 2017,139(50):18178-18181.

[21] ZHOU Y, ZHENG X-Y, CAI J, et al. Three Giant Lanthanide Clusters Ln37 (Ln = Gd,Tb, and Eu) Featuring A Double-Cage Structure[J]. Inorg. Chem., 2017, 56(4):2037-2041.

[22] CHANG L-X, XIONG G, WANG L, et al. A 24-Gd nanocapsule with a largemagnetocaloric effect[J]. Chem. Commun., 2013, 49(11):1055 -1057.

[23] GU X, XUE D. Surface Modification of High-Nuclearity Lanthanide Clusters:  TwoTetramers Constructed by Cage-Shaped {Dy26} Clusters and IsonicotinateLinkers[J]. Inorg. Chem., 2007, 46(8):3212-3216.

[24] 郑秀英.高核稀土及稀土—过渡金属簇合物的合成、结构与磁性研究[D].厦门:厦门大学,2018.

[25] KONG X-J, WU Y, LONG L-S, et al. A Chiral 60-Metal Sodalite Cage Featuring 24Vertex-Sharing [Er4(μ3-OH)4] Cubanes[J]. J. Am. Chem. Soc., 2009, 131(20):6918-6919.

[26] LIN Q, LI J, DONG Y, et al. Lantern-shaped 3d–4f high-nuclearity clusters withmagnetocaloric effect[J]. Dalton Trans., 2017, 46(30):9745 -9749.

[27] LIU D-P, LIN X-P, ZHANG H, et al. Magnetic Properties of a Single-MoleculeLanthanide–Transition-Metal Compound Containing 52 Gadolinium and 56 NickelAtoms[J]. Angew. Chem. Int. Ed., 2016, 55(14):4532-4536.

[28] KONG X-J, REN Y-P, CHEN W-X, et al. A Four-Shell, Nesting Doll-like 3d–4fCluster Containing 108 Metal Ions[J]. Angew. Chem. Int. Ed., 2008, 47(13):2398 -2401.

[29] LI Y-L, WANG H-L, ZHU Z-H, et al. Truncation reaction regulates the out-to-ingrowth mechanism to decrypt the formation of brucite-like dysprosium clusters[J].Dalton Trans., 2022, 51(1):197-202.

[30] MA X-F, WANG H-L, ZHU Z-H, et al. Formation of nanocluster Dy12 containingDy-exclusive vertex-sharing [Dy4(μ3-OH)4] cubanes via simultaneous multitemplateguided and step-by-step assembly[J]. Dalton Trans., 2019, 48(30):11338-11344.

[31] WANG H-L, LIU Z-Y, ZHU Z-H, et al. Manipulating clusters by regulating N,Ochelating ligands: structures and multistep assembly mechanisms[J].CrystEngComm, 2020, 22(5):915-923.

[32] LUO Z-R, WANG H-L, ZHU Z-H, et al. Assembly of Dy60 and Dy30 cage-shapednanoclusters[J]. Communications Chemistry, 2020, 3(1):30.

[33] LI X-Y, SU H-F, LI Q-W, et al. A Giant Dy76 Cluster: A Fused Bi-NanopillarStructural Model for Lanthanide Clusters[J]. Angew. Chem. Int. Ed., 2019,58(30):10184-10188.

[34] CHEN L, GUO J-Y, XU X, et al. A novel 2-D coordination polymer constructedfrom high-nuclearity waist drum-like pure Ho48 clusters[J]. Chem. Commun., 2013,49(84):9728-9730.参考文献68

[35] QIN L, ZHOU G-J, YU Y-Z, et al. Topological Self-Assembly of Highly SymmetricLanthanide Clusters: A Magnetic Study of Exchange-Coupling “Fingerprints” inGiant Gadolinium(III) Cages[J]. J. Am. Chem. Soc., 2017, 139(45):16405 -16411.

[36] THIELEMANN D T, WAGNER A T, RöSCH E, et al. Luminescent Cell-PenetratingPentadecanuclear Lanthanide Clusters[J]. J. Am. Chem. Soc., 2013, 135(20):7454 -7457.

[37] HUANG W, LIU Q, CHEN W, et al. Recent Advances in the Catalytic Applicationsof Lanthanide-Oxo Clusters[J]. Magnetochemistry, 2021, 7(12):161.

[38] ZHANG R, WANG L, XU C, et al. Anion-induced 3d–4f luminescent coordinationclusters: structural characteristics and chemical fixation of CO 2 under mildconditions[J]. Dalton Trans., 2018, 47(21):7159-7165.

[39] CHEN R, CHEN C-L, DU M-H, et al. Soluble lanthanide-transition-metal clustersLn36Co12 as effective molecular electrocatalysts for water oxidation[J]. Chem.Commun., 2021, 57(29):3611-3614.

[40] CHEN R, YAN Z-H, KONG X-J, et al. Integration of Lanthanide–Transition-MetalClusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution[J]. Angew.Chem. Int. Ed., 2018, 57(51):16796-16800.

[41] TAMANG S R, SINGH A, BEDI D, et al. Polynuclear lanthanide–diketonatoclusters for the catalytic hydroboration of carboxamides and esters[J]. Nat. Catal.,2020, 3(2):154-162.

[42] ZHENG X-Y, KONG X-J, ZHENG Z, et al. High-Nuclearity Lanthanide-ContainingClusters as Potential Molecular Magnetic Coolers[J]. Acc. Chem. Res., 2018,51(2):517-525.

[43] ZHENG Y-Z, ZHOU G-J, ZHENG Z, et al. Molecule-based magnetic coolers[J].Chem. Soc. Rev., 2014, 43(5):1462-1475.

[44] 秦雷.含醇胺类配体的 4f 及 3d-4f 金属团簇的合成与性质研究[D].西安:西安交通大学,2017.

[45] SHARPLES J W, ZHENG Y-Z, TUNA F, et al. Lanthanide discs chill well and relaxslowly[J]. Chem. Commun., 2011, 47:7650-7652.

[46] LIU S-J, ZHAO J-P, TAO J, et al. An Unprecedented Decanuclear Gd-III Cluster forMagnetic Refrigeration[J]. Inorg. Chem., 2013, 52(16):9163 -9165.

[47] LUO X-M, HU Z-B, LIN Q-F, et al. Exploring the Performance Improvement ofMagnetocaloric Effect Based Gd-Exclusive Cluster Gd60[J]. J. Am. Chem. Soc.,2018, 140(36):11219-11222.

[48] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a completestructure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341.

[49] SHELDRICK G. A short history of SHELX[J]. Acta Crystallographica Section A,2008, 64(1):112-122.

[50] SPEK A. Single-crystal structure validation with the program PLATON[J]. J. Appl.Crystallogr., 2003, 36(1):7-13.

所在学位评定分委会
化学系
国内图书分类号
O61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355726
专题理学院_化学系
推荐引用方式
GB/T 7714
黄惟明. 高核稀土簇合物的调控合成与磁性研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930109-黄惟明-化学系.pdf(15764KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄惟明]的文章
百度学术
百度学术中相似的文章
[黄惟明]的文章
必应学术
必应学术中相似的文章
[黄惟明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。