题名 | Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence |
作者 | |
通讯作者 | Wei, Jing; Li, Zhanqing; Wang, Jun |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 0013-936X
|
EISSN | 1520-5851
|
卷号 | 56页码:9988-9998 |
摘要 | ABSTRACT: Nitrogen dioxide (NO2) at the ground level poses a serious threat to environmental quality and public health. This study developed a novel, artificial intelligence approach by integrating spatiotemporally weighted information into the missing extra-trees and deep forest models to first fill the satellite data gaps and increase data availability by 49% and then derive daily 1 km surface NO2 concentrations over mainland China with full spatial coverage (100%) for the period 2019-2020 by combining surface NO2 measurements, satellite tropospheric NO2 columns derived from TROPOMI and OMI, atmospheric reanalysis, and model simulations. Our daily surface NO2 estimates have an average out-of-sample (out-of-city) cross-validation coefficient of determination of 0.93 (0.71) and rootmean-square error of 4.89 (9.95) mu g/m3. The daily seamless high-resolution and high-quality dataset "ChinaHighNO2" allows us to examine spatial patterns at fine scales such as the urban-rural contrast. We observed systematic large differences between urban and rural areas (28% on average) in surface NO2, especially in provincial capitals. Strong holiday effects were found, with average declines of 22 and 14% during the Spring Festival and the National Day in China, respectively. Unlike North America and Europe, there is little difference between weekdays and weekends (within +/- 1 mu g/m3). During the COVID-19 pandemic, surface NO2 concentrations decreased considerably and then gradually returned to normal levels around the 72nd day after the Lunar New Year in China, which is about 3 weeks longer than the tropospheric NO2 column, implying that the former can better represent the changes in NOx emissions. KEYWORDS: surface NO2, air pollution, big data, artificial intelligence, COVID-19 |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | ESI高被引
; NI论文
; ESI热点
|
学校署名 | 其他
|
资助项目 | NASA[
|
WOS研究方向 | Engineering
; Environmental Sciences & Ecology
|
WOS类目 | Engineering, Environmental
; Environmental Sciences
|
WOS记录号 | WOS:000823123200001
|
出版者 | |
EI入藏号 | 20223012418117
|
EI主题词 | Air Pollution
; Artificial Intelligence
; Big Data
; Health Risks
; Mean Square Error
; Nitrogen Oxides
; Rural Areas
; Troposphere
|
EI分类号 | Atmospheric Properties:443.1
; Air Pollution:451
; Health Care:461.7
; Data Processing And Image Processing:723.2
; Artificial Intelligence:723.4
; Inorganic Compounds:804.2
; Mathematical Statistics:922.2
|
ESI学科分类 | ENVIRONMENT/ECOLOGY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:153
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/355833 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China 2.Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Peoples R China 3.China Univ Min & Technol, Sch Environm & Geoinformat, Xuzhou 221116, Jiangsu, Peoples R China 4.Ctr Astrophys Harvard & Smithsonian, Atom & Mol Phys Div, Cambridge, MA 02138 USA 5.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA 6.Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China 7.Royal Netherlands Meteorol Inst, Satellite Observat Dept, NL-3731 GA De Bilt, Netherlands 8.Wageningen Univ, Meteorol & Air Qual Grp, NL-6708 PB Wageningen, Netherlands 9.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China 10.Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA 11.Qingdao Univ, Sch Econ, Qingdao 266071, Peoples R China 12.Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China 13.Univ Iowa, Dept Chem & Biochem Engn, Iowa Technol Inst, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA |
推荐引用方式 GB/T 7714 |
Wei, Jing,Liu, Song,Li, Zhanqing,et al. Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2022,56:9988-9998.
|
APA |
Wei, Jing.,Liu, Song.,Li, Zhanqing.,Liu, Cheng.,Qin, Kai.,...&Wang, Jun.(2022).Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence.ENVIRONMENTAL SCIENCE & TECHNOLOGY,56,9988-9998.
|
MLA |
Wei, Jing,et al."Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence".ENVIRONMENTAL SCIENCE & TECHNOLOGY 56(2022):9988-9998.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
acs.est.2c03834.pdf(2994KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论