题名 | Class binarization to neuroevolution for multiclass classification |
作者 | |
通讯作者 | Gao, Zhenyu; Liu, Ting |
发表日期 | 2022-07-01
|
DOI | |
发表期刊 | |
ISSN | 0941-0643
|
EISSN | 1433-3058
|
摘要 | Multiclass classification is a fundamental and challenging task in machine learning. The existing techniques of multiclass classification can be categorized as (1) decomposition into binary (2) extension from binary and (3) hierarchical classification. Decomposing multiclass classification into a set of binary classifications that can be efficiently solved by using binary classifiers, called class binarization, which is a popular technique for multiclass classification. Neuroevolution, a general and powerful technique for evolving the structure and weights of neural networks, has been successfully applied to binary classification. In this paper, we apply class binarization techniques to a neuroevolution algorithm, NeuroEvolution of Augmenting Topologies (NEAT), that are used to generate neural networks for multiclass classification. We propose a new method that applies Error-Correcting Output Codes (ECOC) to design the class binarization strategies on the neuroevolution for multiclass classification. The ECOC strategies are compared with the class binarization strategies of One-vs-One and One-vs-All on three well-known datasets of Digit, Satellite, and Ecoli. We analyse their performance from four aspects of multiclass classification degradation, accuracy, evolutionary efficiency, and robustness. The results show that the NEAT with ECOC performs high accuracy with low variance. Specifically, it shows significant benefits in a flexible number of binary classifiers and strong robustness. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Guangdong Natural Science Funds for Young Scholar[2021A1515110641]
; National Natural Science Foundation of China[61773197]
; Shenzhen Fundamental Research Program[JCYJ20200109141622964]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000822478900001
|
出版者 | |
EI入藏号 | 20222812340633
|
EI主题词 | Codes (symbols)
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Information Sources and Analysis:903.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/355844 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 2.Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands 3.Vrije Univ Amsterdam, Dept Clin Neuro & Dev Psychol, Amsterdam, Netherlands |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lan, Gongjin,Gao, Zhenyu,Tong, Lingyao,et al. Class binarization to neuroevolution for multiclass classification[J]. NEURAL COMPUTING & APPLICATIONS,2022.
|
APA |
Lan, Gongjin,Gao, Zhenyu,Tong, Lingyao,&Liu, Ting.(2022).Class binarization to neuroevolution for multiclass classification.NEURAL COMPUTING & APPLICATIONS.
|
MLA |
Lan, Gongjin,et al."Class binarization to neuroevolution for multiclass classification".NEURAL COMPUTING & APPLICATIONS (2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论