中文版 | English
题名

Class binarization to neuroevolution for multiclass classification

作者
通讯作者Gao, Zhenyu; Liu, Ting
发表日期
2022-07-01
DOI
发表期刊
ISSN
0941-0643
EISSN
1433-3058
摘要
Multiclass classification is a fundamental and challenging task in machine learning. The existing techniques of multiclass classification can be categorized as (1) decomposition into binary (2) extension from binary and (3) hierarchical classification. Decomposing multiclass classification into a set of binary classifications that can be efficiently solved by using binary classifiers, called class binarization, which is a popular technique for multiclass classification. Neuroevolution, a general and powerful technique for evolving the structure and weights of neural networks, has been successfully applied to binary classification. In this paper, we apply class binarization techniques to a neuroevolution algorithm, NeuroEvolution of Augmenting Topologies (NEAT), that are used to generate neural networks for multiclass classification. We propose a new method that applies Error-Correcting Output Codes (ECOC) to design the class binarization strategies on the neuroevolution for multiclass classification. The ECOC strategies are compared with the class binarization strategies of One-vs-One and One-vs-All on three well-known datasets of Digit, Satellite, and Ecoli. We analyse their performance from four aspects of multiclass classification degradation, accuracy, evolutionary efficiency, and robustness. The results show that the NEAT with ECOC performs high accuracy with low variance. Specifically, it shows significant benefits in a flexible number of binary classifiers and strong robustness.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Guangdong Natural Science Funds for Young Scholar[2021A1515110641] ; National Natural Science Foundation of China[61773197] ; Shenzhen Fundamental Research Program[JCYJ20200109141622964]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000822478900001
出版者
EI入藏号
20222812340633
EI主题词
Codes (symbols)
EI分类号
Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355844
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
3.Vrije Univ Amsterdam, Dept Clin Neuro & Dev Psychol, Amsterdam, Netherlands
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lan, Gongjin,Gao, Zhenyu,Tong, Lingyao,et al. Class binarization to neuroevolution for multiclass classification[J]. NEURAL COMPUTING & APPLICATIONS,2022.
APA
Lan, Gongjin,Gao, Zhenyu,Tong, Lingyao,&Liu, Ting.(2022).Class binarization to neuroevolution for multiclass classification.NEURAL COMPUTING & APPLICATIONS.
MLA
Lan, Gongjin,et al."Class binarization to neuroevolution for multiclass classification".NEURAL COMPUTING & APPLICATIONS (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lan, Gongjin]的文章
[Gao, Zhenyu]的文章
[Tong, Lingyao]的文章
百度学术
百度学术中相似的文章
[Lan, Gongjin]的文章
[Gao, Zhenyu]的文章
[Tong, Lingyao]的文章
必应学术
必应学术中相似的文章
[Lan, Gongjin]的文章
[Gao, Zhenyu]的文章
[Tong, Lingyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。