中文版 | English
题名

Prediction of River Pollution Under the Rainfall-Runoff Impact by Artificial Neural Network: A Case Study of Shiyan River, Shenzhen, China

作者
通讯作者Liu, Junguo
发表日期
2022-06-22
DOI
发表期刊
EISSN
2296-665X
卷号10
摘要
Climate change and rapid urbanization have made it difficult to predict the risk of pollution in cities under different types of rainfall. In this study, a data-driven approach to quantify the effects of rainfall characteristics on river pollution was proposed and applied in a case study of Shiyan River, Shenzhen, China. The results indicate that the most important factor affecting river pollution is the dry period followed by average rainfall intensity, maximum rainfall in 10 min, total amount of rainfall, and initial runoff intensity. In addition, an artificial neural network model was developed to predict the event mean concentration (EMC) of COD in the river based on the correlations between rainfall characteristics and EMC. Compared to under light rain (< 10 mm/day), the predicted EMC was five times lower under heavy rain (25-49.9 mm/day) and two times lower under moderate rain (10-24.9 mm/day). By converting the EMC to chemical oxygen demand in the river, the pollution load under non-point-source runoff was estimated to be 497.6 t/year (with an accuracy of 95.98%) in Shiyan River under typical rainfall characteristics. The results of this study can be used to guide urban rainwater utilization and engineering design in Shenzhen. The findings also provide insights for predicting the risk of rainfall-runoff pollution and developing related policies in other cities.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000821276200001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355870
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R China
2.Pengcheng Lab, Shenzhen, Peoples R China
3.Delft Univ Technol, Delft, Netherlands
4.Meteorol Bur Shenzhen Municipal, Shenzhen, Peoples R China
5.PowerChina Huadong Engn Corp Ltd, Hangzhou, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Tian, Zhan,Yu, Ziwei,Li, Yifan,et al. Prediction of River Pollution Under the Rainfall-Runoff Impact by Artificial Neural Network: A Case Study of Shiyan River, Shenzhen, China[J]. FRONTIERS IN ENVIRONMENTAL SCIENCE,2022,10.
APA
Tian, Zhan.,Yu, Ziwei.,Li, Yifan.,Ke, Qian.,Liu, Junguo.,...&Tang, Yingdong.(2022).Prediction of River Pollution Under the Rainfall-Runoff Impact by Artificial Neural Network: A Case Study of Shiyan River, Shenzhen, China.FRONTIERS IN ENVIRONMENTAL SCIENCE,10.
MLA
Tian, Zhan,et al."Prediction of River Pollution Under the Rainfall-Runoff Impact by Artificial Neural Network: A Case Study of Shiyan River, Shenzhen, China".FRONTIERS IN ENVIRONMENTAL SCIENCE 10(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tian, Zhan]的文章
[Yu, Ziwei]的文章
[Li, Yifan]的文章
百度学术
百度学术中相似的文章
[Tian, Zhan]的文章
[Yu, Ziwei]的文章
[Li, Yifan]的文章
必应学术
必应学术中相似的文章
[Tian, Zhan]的文章
[Yu, Ziwei]的文章
[Li, Yifan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。