[1] CULSHAW B. Optical Fiber Sensor Technologies: Opportunities and—Perhaps—Pitfalls[J]. Journal of Lightwave Technology, 2004, 22(1): 39-50.
[2] 刘婧璇. 新型高分辨率光学传感系统及其关键器件的研究[D]. 北京:北京交通大学,2019:4-22.
[3] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber Grating Sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
[4] JAMES S W, TATAM R P. Optical Fibre Long-period Grating Sensors: Characteristics and application[J]. Measurement Science and Technology, 2003, 14(5): R49-R61.
[5] ALBERT J, SHAO L Y, CAUCHETEUR C. Tilted Giber Bragg Grating Sensors[J]. Laser & Photonics Reviews, 2013, 7(1): 83-108.
[6] TOSI D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications[J]. Sensors, 2018, 18(7):2147-1-32.
[7] LI L C, XIA L, XIE Z H, et al. All-fiber Mach-Zehnder Interferometers for Sensing Applications[J]. Optics Express, 2012, 20(10): 11109-11120.
[8] ISLAM M R, ALI M M, LAI M H, et al. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review[J]. Sensors, 2014, 14(4): 7451-7488.
[9] CULSHAW B. The Optical Fibre Sagnac Interferometer: An Overview of Its Principles and Applications[J]. Measurement Science and Technology, 2006, 17(1): R1-R16.
[10] LEE B H, KIM Y H, PARK K S, et al. Interferometric Fiber Optic Sensors[J]. Sensors, 2012, 12(3): 2467-2486.
[11] LIAO C R, WANG D N, WANG Y. Microfiber In-line Mach-Zehnder Interferometer for Strain Sensing[J]. OPTICS LETTERS, 2013, 38(5): 757-759.
[12] WU D, ZHU T, CHIANG K S, et al. All Single-Mode Fiber Mach-Zehnder Interferometer Based on Two Peanut-Shape Structures[J]. Journal of Lightwave Technology, 2012, 30(5): 805-810.
[13] WANG Q, WEI W Q, GUO M J, et al. Optimization of cascaded fiber tapered Mach-Zehnder interferometer and Refractive Index Sensing Technology[J]. Sensors and Actuators B-Chemical, 2016, 222: 159-165.
[14] HUANG J W, CHEN Y C, SONG Q H, et al. Distributed Fiber-optic Sensor for Location based on Polarization-stabilized Dual-Mach-Zehnder Interferometer[J]. Optics Express, 2020, 28(17): 24820-24832.
[15] JOSE CAPMANY D N. Microwave Photonics Combines Two Worlds[J]. Nature Photonics, 2007, 1: 12.
[16] HERVAS J, RICCHIUTI A L, LI W, et al. Microwave Photonics for Optical Sensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 327-339.
[17] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A Fully Photonics-based Coherent Radar System[J]. Nature, 2014, 507(7492): 341-345.
[18] MARPAUNG D, YAO J P, CAPMANY J. Integrated Microwave Photonics[J]. Nature Photonics, 2019, 13(2): 80-90.
[19] ZOU X, LU B, PAN W, et al. Photonics for Microwave Measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711-734.
[20] ZOU X, BAI W, CHEN W, et al. Microwave Photonics for Featured Applications in High-Speed Railways: Communications, Detection, and Sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346.
[21] LI L, YI X, SONG S, et al. Microwave Photonic Signal Processing and Sensing Based on Optical Filtering[J]. Applied Sciences, 2019, 9(1):1-12.
[22] 卢冰. 宽带微波光子信号多维参数测量研究[D]. 成都:西南交通大学通信与信息系统专业博士学位论文,2018: 1-2.
[23] XU Z, SHU X, FU H. Sensitivity Enhanced Fiber Sensor based on a Fiber Ring Microwave Photonic Filter with the Vernier Effect[J]. Optics Express, 2017, 25(18): 21559-21566.
[24] FU H, ZHANG W, MOU C, et al. High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering[J]. IEEE Photonics Technology Letters, 2009, 21(8): 519-521.
[25] RICCHIUTI A L, BARRERA D, SALES S, et al. Long fiber Bragg Grating Sensor Interrogation using Discrete-time Microwave Photonic Filtering Techniques[J]. Optics Express, 2013, 21(23): 28175-28181.
[26] LIU J, DENG H, ZHANG W, et al. On-Chip Sensor for Simultaneous Temperature and Refractive Index Measurements Based on a Dual-Passband Microwave Photonic Filter[J]. Journal of Lightwave Technology, 2018, 36(18): 4099-4105.
[27] CAO Y, WANG X, GUO T, et al. High-resolution and Temperature-Compensational HER2 Antigen Detection based on Microwave Photonic Interrogation[J]. Sensors and Actuators B: Chemical, 2017, 245: 583-589.
[28] ZHANG S, WU R, CHEN H, et al. Fiber-Optic Sensing Interrogation System for Simultaneous Measurement of Temperature and Transversal Loading Based on a Single-Passband RF Filter[J]. IEEE Sensors Journal, 2017, 17(7): 2036-2041.
[29] CHOI S J, MAO W, PAN J K. Novel RF Interrogation of a Iiber Bragg Grating Sensor using Bidirectional Modulation of a Mach-Zehnder Electro-optical Modulator[J]. Sensors (Basel), 2013, 13(7): 8403-8411.
[30] RICCHIUTI A L, BARRERA D, URRUTIA A, et al. Continuous Liquid-Level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques[J]. IEEE Sensors Journal, 2016, 16(6): 1652-1658.
[31] 付宏燕. 基于光纤器件的微波信号产生、滤波技术及其应用[D]. 杭州:浙江大学,2010:2-58.
[32] 黄龙. 基于外调制器的微波光子技术在微波与传感系统中的应用[D]. 南京:南京大学,2016:125-126.
[33] 原子岳. 基于外调制的快速与强吸收气体传感技术研究[D]. 哈尔滨:哈尔滨工业大学,2021:27-27.
[34] ZOU X, LIU X, LI W, et al. Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection[J]. IEEE Journal of Quantum Electronics, 2016, 52(1): 1-16.
[35] ZHOU D, DONG Y, YAO J. Truly Distributed and Ultra-Fast Microwave Photonic Fiber-Optic Sensor[J]. Journal of Lightwave Technology, 2020, 38(15): 4150-4159.
[36] ZENG Z, PENG D, ZHANG Z, et al. An SBS-Based Optoelectronic Oscillator for High-Speed and High-Sensitivity Temperature Sensing[J]. IEEE Photonics Technology Letters, 2020, 32(16): 995-998.
[37] YIN B, WANG M, WU S, et al. High Sensitivity Axial Strain and Temperature Sensor based on Dual-frequency Optoelectronic Oscillator using PMFBG Fabry-Perot Filter[J]. Optics Express, 2017, 25(13): 14106-14113.
[38] YAO J. Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing[J]. Journal of Lightwave Technology, 2017, 35(16): 3489-3497.
[39] WANG M, ZHANG N, HUANG X, et al. High Sensitivity Demodulation of a Reflective Interferometer-based Optical Current Sensor using an Optoelectronic Oscillator[J]. Optics Letters, 2020, 45(16): 4519-4522.
[40] CHENG Y, WANG Y, SONG Z, et al. High-sensitivity Optical Fiber Temperature Sensor based on a Dual-loop Optoelectronic Oscillator with the Vernier Effect[J]. Optics Express, 2020, 28(23): 35264-35271.
[41] 范志强. 光电振荡器及其应用研究[D]. 成都:电子科技大学,2020:9-16.
[42] 王文轩. 基于光电振荡器的微波光子技术在传感系统中的研究[D]. 南京:南京大学,2020: 24-38.
[43] 唐宇. 光电振荡器和光载无线技术的应用研究[D]. 北京:北京交通大学,2021: 6-9.
[44] ZHANG B, ZHU D, CHEN H, et al. Microwave Frequency Measurement Based on an Optically Injected Semiconductor Laser[J]. IEEE Photonics Technology Letters, 2020, 32(23): 1485-1488.
[45] DONG X, SHAO L Y, FU H Y, et al. Intensity-modulated Fiber Bragg Grating Sensor System based on Radio-frequency Signal Measurement[J]. Optics letters, 2008, 33(5): 482-484.
[46] ZHAO P, ZHANG J, YU Y, et al. In-line Polarization-dependent Microfiber Interferometers and Their Applications in UWB Signal Generation[J]. Optics Express, 2013, 21(7): 8231-8239.
[47] XU Z, SHU X. Fiber Optic Sensor Based on Vernier Microwave Frequency Comb[J]. Journal of Lightwave Technology, 2019, 37(14): 3503-3509.
[48] CAPMANY J, ORTEGA B, PASTOR D. A Tutorial on Microwave Photonic Filters[J]. Journal of Lightwave Technology, 2006, 24(1): 201-229.
[49] CAPMANY J, MORA J, GASULLA I, et al. Microwave Photonic Signal Processing[J]. Journal of Lightwave Technology, 2013, 31(4): 571-586.
[50] YAO J. Microwave Photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[51] YAO J P. Microwave Photonic Sensors[J]. Journal of Lightwave Technology, 2021, 39(12): 3626-3637.
[52] ZHOU J, ADITYA S, SHUM P P, et al. Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter With an Infinite Impulse Response[J]. IEEE Photonics Technology Letters, 2010, 22(10): 682-684.
[53] LI S, WU R, WANG H, et al. Fiber-Ring-Based RF Filtering for Temperature and Transversal Loading Measurement and Interrogation[J]. IEEE Sensors Journal, 2018, 18(14): 5794-5798.
[54] LI L, YI X, CHEW S X, et al. Double-pass Microwave Photonic Sensing System based on Low-coherence Interferometry[J]. Optics Letters, 2019, 44(7): 1662-1665.
[55] LUO C, ZHENG D, ZOU X, et al. Performance Upgradation of Microwave Photonic Filtering Interrogation Using Gaussian Process Regression[J]. Journal of Lightwave Technology, 2021, 39(24): 7682-7688.
[56] LI M, LI W, YAO J, et al. Femtometer-Resolution Wavelength Interrogation of a Phase-Shifted Fiber Bragg Grating Sensor Using an Optoelectronic Oscillator[C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Optical Society of America, 2012: BTu2E. 3.
[57] KONG F, LI W, YAO J. Transverse Load Sensing based on a Dual-frequency Optoelectronic Oscillator[J]. Optics Letters, 2013, 38(14): 2611-2613.
[58] KONG F, ROMEIRA B, ZHANG J, et al. A Dual-Wavelength Fiber Ring Laser Incorporating an Injection-Coupled Optoelectronic Oscillator and Its Application to Transverse Load Sensing[J]. Journal of Lightwave Technology, 2014, 32(9): 1784-1793.
[59] ZHU Y H, JIN X F, ZHANG X M, et al. A Temperature Sensor based on a Brillouin Optoelectronic Oscillator[J]. Microwave and Optical Technology Letters, 2016, 58(8): 1952-1955.
[60] FENG D, KAI L, ZHU T, et al. High-precision Strain-insensitive Temperature Sensor based on an Optoelectronic Oscillator[J]. Optics Express, 2019, 27(26): 37532-37540.
[61] WANG Y, ZHANG J, YAO J. An Optoelectronic Oscillator for High Sensitivity Temperature Sensing[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1458-1461.
[62] XU Z, SHU X, FU H. Fiber Bragg Grating Sensor Interrogation System based on an Optoelectronic Oscillator Loop[J]. Optics Express, 2019, 27(16): 23274-23281.
[63] GUAN B-O, JIN L, ZHANG Y, et al. Polarimetric Heterodyning Fiber Grating Laser Sensors[J]. Journal of Lightwave Technology, 2012, 30(8): 1097-1112.
[64] SHAFIR E, BERKOVIC G. Heterodyne Interrogation Scheme for Pi-phase-shifted Fiber Bragg Grating Sensors[J]. Optics Letters, 2019, 44(3): 514-517.
[65] WANG Y, ZHANG J, COUTINHO O, et al. Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor with High Resolution using a Linearly Chirped Optical Waveform[J]. Optics Letters, 2015, 40(21): 4923-4926.
[66] LIU W, LI M, WANG C, et al. Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio[J]. Journal of Lightwave Technology, 2011, 29(9): 1239-1247.
[67] XIA H, WANG C, BLAIS S, et al. Ultrafast and Precise Interrogation of Fiber Bragg Grating Sensor Based on Wavelength-to-Time Mapping Incorporating Higher Order Dispersion[J]. Journal of Lightwave Technology, 2010, 28(3): 254-261.
[68] DARTHY R R, VENKATESWARAN C, SUBRAMANIAN V, et al. Fabry-Perot Modes Associated with Hyperbolic-like Dispersion in Dielectric Photonic Crystals and Demonstration of a Bending Angle Sensor at Microwave Frequencies[J]. Sci Rep, 2020, 10(1): 11117.
[69] HAO T, CEN Q, DAI Y, et al. Breaking the Limitation of Mode Building Time in an Optoelectronic Oscillator[J]. Natature Communications, 2018, 9(1): 1839.
[70] 邵宇辰. 基于光电振荡机制的微波信号处理研究[D]. 大连:大连理工大学,2019:22-28.
[71] 沈志强. 基于微波光子学的引导式微波宽带接收性能的研究[D]. 哈尔滨:哈尔滨工业大学,2021:21-23.
[72] ERDOGAN T. Fiber Grating Spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.
[73] YAO X S, MALEKI L. Optoelectronic Microwave Oscillator[J]. Journal of the Optical Society of America B-Optical Physics, 1996, 13(8): 1725-1735.
[74] NI X, WANG M, GUO D, et al. A Hybrid Mach–Zehnder Interferometer for Refractive Index and Temperature Measurement[J]. IEEE Photonics Technology Letters, 2016, 28(17): 1850-1853.
[75] GENG Y, LI X, TAN X, et al. High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper[J]. IEEE Sensors Journal, 2011, 11(11): 2891-2894.
[76] WANG J, WANG A, CHEN X, et al. An All Fiber Mach-Zehnder Interferometer Based on Tapering Core-Offset Joint for Strain Sensing[J]. IEEE Photonics Technology Letters, 2022, 34(1): 11-14.
[77] WU D, ZHU T, CHIANG K S, et al. All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures[J]. Journal of Lightwave Technology, 2012, 30(5): 805-810.
[78] WU Q, SEMENOVA Y, WANG P F, et al. High Sensitivity SMS Fiber Structure based Refractometer - Analysis and Experiment[J]. Optics Express, 2011, 19(9): 7937-7944.
[79] LI X, CHEN N K, XI L, et al. Micro-fiber Mach-Zehnder interferometer based on Ring-core fiber[J]. Optics Express, 2019, 27(24): 34603-34610.
[80] YIN B, LI Y, LIU Z B, et al. Investigation on a Compact In-line Multimode-Single-mode-Multimode Fiber Structure[J]. Optics and Laser Technology, 2016, 80: 16-21.
[81] SHEN L, WU H, ZHAO C, et al. Distributed Curvature Sensing based on a Bending Loss-resistant Ring-core fiber[J]. Photonics Research, 2020, 8(2):165-174.
[82] MORA J, ORTEGA B, DIEZ A, et al. Photonic Microwave Tunable Single-bandpass Filter based on a Mach-Zehnder Interferometer[J]. Journal of Lightwave Technology, 2006, 24(7): 2500-2509.
[83] CHEN H, ZHANG S, FU H, et al. Sensing Interrogation Technique for Fiber-optic Interferometer Type of Sensors based on a Single-passband RF Filter[J]. Optics Express, 2016, 24(3): 2765-2773.
[84] LI Z, ZHANG Y X, ZHANG W G, et al. Parallelized Fiber Michelson Interferometers with Advanced Curvature Sensitivity Plus Abated Temperature Crosstalk[J]. Optics Letters, 2020, 45(18): 4996-4999.
[85] VILLATORO J, AMOREBIETA J, ORTEGA-GOMEZ A, et al. Composed Multicore Fiber Structure for Direction-sensitive Curvature Monitoring[J]. APL Photonics, 2020, 5(7):070801-1-7.
[86] DONG S, DONG B, YU C, et al. High Sensitivity Optical Fiber Curvature Sensor Based on Cascaded Fiber Interferometer[J]. Journal of Lightwave Technology, 2018, 36(4): 1125-1130.
[87] ZHENG D, MADRIGAL J, BARRERA D, et al. Microwave Photonic Filtering for Interrogating FBG-Based Multicore Fiber Curvature Sensor[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710.
[88] BARRERA D, MADRIGAL J, SALES S. Long Period Gratings in Multicore Optical Fibers for Directional Curvature Sensor Implementation[J]. Journal of Lightwave Technology, 2018, 36(4): 1063-1068.
[89] BARRERA D, MADRIGAL J, SALES S. Tilted fiber Bragg Gratings in Multicore Optical Fibers for Optical Sensing[J]. Optics Letters, 2017, 42(7): 1460-1463.
[90] TANG Y, WANG M G, ZHANG J, et al. Curvature and Temperature Sensing based on a Dual-frequency OEO using Cascaded TCFBG-FP and SMFBG-FP Cavities[J]. Optics and Laser Technology, 2020, 131:106442.
[91] WANG G Q, XIAO D R, SHAO L Y, et al. An Undersampling Communication System Based on Compressive Sensing and In-Fiber Grating[J]. IEEE Photonics Journal, 2021, 13(6):7300507.
[92] MOU C B, WANG H, BALE B G, et al. All-fiber Passively Mode-locked Femtosecond Laser using a 45 Degrees-tilted Fiber Grating Polarization Element[J]. Optics Express, 2010, 18(18): 18906-18911.
[93] CHEBEN P, POST E, JANZ S, et al. Tilted Fiber Bragg Grating Sensor Interrogation System using a High-resolution Silicon-on-insulator Arrayed Waveguide Grating[J]. Optics Letters, 2008, 33(22): 2647-2649.
[94] BANDYOPADHYAY S, SHAO L Y, CHAO W, et al. Highly Efficient Free-space Fiber Coupler with 45 Degrees Tilted Fiber Grating to Access Remotely Placed Optical Fiber Sensors[J]. Optics Express, 2020, 28(11): 16569-16578.
[95] CHANDRASEKHARAN H K, IZDEBSKI F, GRIS-SANCHEZ I, et al. Multiplexed Single-mode Wavelength-to-time Mapping of Multimode Light[J]. Nature Communications, 2017, 8: 14080.
[96] FENG X H, TAM H Y, WAI P K A. Stable and Uniform Multiwavelength Erbium-doped Fiber Laser using Nonlinear Polarization Rotation[J]. Optics Express, 2006, 14(18): 8205-8210.
[97] MATSAS V J, NEWSON T P, RICHARDSON D J, et al. Self-starting Passively Mode-locked Fiber Ring Soliton Laser Exploiting Nonlinear Polarization Rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.
[98] DAI Y T, YAO J P. Nonuniformly Spaced Photonic Microwave Delay-Line Filters and Applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3279-3289.
[99] WANG C, YAO J. A Nonuniformly Spaced Microwave Photonic Filter Using a Spatially Discrete Chirped FBG[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1889-1892.
[100] CHEN X, ZHOU K, ZHANG L, et al. In-Fiber Twist Sensor Based on a Fiber Bragg Grating With 81 Degrees Tilted Structure[J]. IEEE Photonics Technology Letters, 2006, 18(24): 2596-2598.
[101] J. ALBERT L Y S, AND C. CAUCHETEUR. Tilted Fiber Bragg Grating Sensors[J]. Laser Photonics Rev, 2013, 7(1): 83–108.
[102] SHENG H J, FU M Y, CHEN T C, et al. A Lateral Pressure Sensor Using a Fiber Bragg Grating[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1146-1148.
[103] ZHAO H, SUN F, YANG Y, et al. A Novel Temperature-compensated Method for FBG-GMM Current Sensor[J]. Optics Communications, 2013, 308: 64-69.
[104] HAN J, HU H, WANG H, et al. Temperature-Compensated Magnetostrictive Current Sensor Based on the Configuration of Dual Fiber Bragg Gratings[J]. Journal of Lightwave Technology, 2017, 35(22): 4910-4915.
[105] YAO X S, MALEKI L. Multiloop Optoelectronic Oscillator[J]. IEEE Journal of Quantum Electronics, 2000, 36(1): 79-84.
[106] SHI Q, WANG Y, CUI Y, et al. Resolution-Enhanced Fiber Grating Refractive Index Sensor Based on an Optoelectronic Oscillator[J]. IEEE Sensors Journal, 2018, 18(23): 9562-9567.
[107] WANG W, LIU Y, DU X, et al. Ultra-Stable and Real-Time Demultiplexing System of Strong Fiber Bragg Grating Sensors Based on Low-Frequency Optoelectronic Oscillator[J]. Journal of Lightwave Technology, 2020, 38(4): 981-988.
[108] FENG D Q, GAO Y, ZHU T, et al. High-Precision Temperature-Compensated Magnetic Field Sensor Based on Optoelectronic Oscillator[J]. Journal of Lightwave Technology, 2021, 39(8): 2559-2564.
[109] DAPINO M J, FLATAU A B, CALKINS F T. Statistical Analysis of Terfenol-D Material Properties[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(7): 587-599.
[110] DAVINO D, VISONE C, AMBROSINO C, et al. Compensation of Hysteresis in Magnetic Field Sensors Employing Fiber Bragg Grating and Magneto-elastic Materials[J]. Sensors and Actuators A: Physical, 2008, 147(1): 127-136.
[111] ZHANG P, TANG M, GAO F, et al. An Ultra-Sensitive Magnetic Field Sensor Based on Extrinsic Fiber-Optic Fabry-Perot Interferometer and Terfenol-D[J]. Journal of Lightwave Technology, 2015, 33(15): 3332-3337.
修改评论