[1] J.P. Springston, L. Yocavitch, Existence and control of Legionella bacteria in building water systems: A review, Journal of Occupational and Environmental Hygiene 14(2) (2017) 124-134.
[2] A.W.H. Chin, J.T.S. Chu, M.R.A. Perera, K.P.Y. Hui, H.L. Yen, M.C.W. Chan, M. Peiris, L.L.M. Poon, Stability of SARS-CoV-2 in different environmental conditions, Lancet Microbe 1(1) (2020) E10-E10.
[3] C.P. Sharps, G. Kotwal, J.L. Cannon, Human Norovirus Transfer to Stainless Steel and Small Fruits during Handling, Journal of Food Protection 75(8) (2012) 1437-1446.
[4] S.L. Warnes, Z.R. Little, C.W. Keevil, Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials, Mbio 6(6) (2015).
[5] J.R. Flanders, F.H. Yildiz, Biofilms as reservoirs for disease, Microbial biofilms, American Society of Microbiology2004, pp. 314-331.
[6] L.J. Kagan, A.E. Aiello, E. Larson, The role of the home environment in the transmission of infectious diseases, Journal of community health 27(4) (2002) 247-267.
[7] A. Rampling, S. Wiseman, L. Davis, A. Hyett, A. Walbridge, G. Payne, A. Cornaby, Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus aureus, Journal of Hospital Infection 49(2) (2001) 109-116.
[8] S.J. Dancer, Mopping up hospital infection, Journal of hospital infection 43(2) (1999) 85-100.
[9] E.A. Zottola, K.C. Sasahara, Microbial biofilms in the food processing industry—should they be a concern?, International journal of food microbiology 23(2) (1994) 125-148.
[10] H.A. Videla, W.G. Characklis, Biofouling and microbially influenced corrosion, International Biodeterioration & Biodegradation 29(3-4) (1992) 195-212.
[11] L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z.J. Shen, Dislocation network in additive manufactured steel breaks strength-ductility trade-off, Materials Today 21(4) (2018) 354-361.
[12] H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Materialia 87 (2015) 150-160.
[13] C. Herrera, D. Ponge, D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia 59(11) (2011) 4653-4664.
[14] F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia 60(3) (2012) 1059-1071.
[15] N. Lopez, M. Cid, M. Puiggali, Influence of sigma-phase on mechanical properties and corrosion resistance of duplex stainless steels, Corros Sci 41(8) (1999) 1615-1631.
[16] H.D. Kusumaningrum, G. Riboldi, W.C. Hazeleger, R.R. Beumer, Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods, Int J Food Microbiol 85(3) (2003) 227-236.
[17] S.A. Wilks, H. Michels, C.W. Keevil, The survival of Escherichia coli O157 on a range of metal surfaces, Int J Food Microbiol 105(3) (2005) 445-454.
[18] N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, J.O. Lloyd-Smith, E. de Wit, V.J. Munster, Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1, New Engl J Med 382(16) (2020) 1564-1567.
[19] J.O. Noyce, H. Michels, C.W. Keevil, Inactivation of influenza A virus on copper versus stainless steel surfaces, Appl Environ Microbiol 73(8) (2007) 2748-50.
[20] S.M. Wu, S. Altenried, A. Zogg, F. Zuber, K. Maniura-Weber, Q. Ren, Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation, Acs Omega 3(6) (2018) 6456-6464.
[21] S. Bagherifard, D.J. Hickey, A.C. de Luca, V.N. Malheiro, A.E. Markaki, M. Guagliano, T.J. Webster, The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel, Biomaterials 73 (2015) 185-197.
[22] J.M. Schierholz, L.J. Lucas, A. Rump, G. Pulverer, Efficacy of silver-coated medical devices, J Hosp Infect 40(4) (1998) 257-262.
[23] M.A. Wassall, M. Santin, C. Isalberti, M. Cannas, S.P. Denyer, Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins, J Biomed Mater Res 36(3) (1997) 325-330.
[24] P. Evans, D. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel, Surface and Coatings Technology 201(22-23) (2007) 9319-9324.
[25] S. Yuan, D. Wan, B. Liang, S. Pehkonen, Y. Ting, K. Neoh, E. Kang, Lysozyme-coupled poly (poly (ethylene glycol) methacrylate)− stainless steel hybrids and their antifouling and antibacterial surfaces, Langmuir 27(6) (2011) 2761-2774.
[26] N. Hutasoit, B. Kennedy, S. Hamilton, A. Luttick, R.A.R. Rashid, S. Palanisamy, Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology, Manufacturing Letters 25 (2020) 93-97.
[27] W.J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G.H. Dickinson, S.L.-M. Teo, D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir 27(11) (2011) 7065-7076.
[28] K.R. Sreekumari, K. Nandakumar, K. Takao, Y. Kikuchi, Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion, Isij Int 43(11) (2003) 1799-1806.
[29] W.C. Chiang, I.S. Tseng, P. Moller, L.R. Hilbert, T. Tolker-Nielsen, J.K. Wu, Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance, Mater Chem Phys 119(1-2) (2010) 123-130.
[30] C.F. Huang, H.J. Chiang, W.C. Lan, H.H. Chou, K.L. Ou, C.H. Yu, Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms, Biofouling 27(5) (2011) 449-457.
[31] Y. Xuan, C. Zhang, N.Q. Fan, Z.G. Yang, Antibacterial Property and Precipitation Behavior of Ag-Added 304 Austenitic Stainless Steel, Acta Metall Sin-Engl 27(3) (2014) 539-545.
[32] G. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals 11(1) (1998) 27-32.
[33] A.D. Russell, W.B. Hugo, Antimicrobial activity and action of silver, Prog Med Chem 31 (1994) 351-70.
[34] T.J. Berger, J.A. Spadaro, R. Bierman, S.E. Chapin, R.O. Becker, Antifungal Properties of Electrically Generated Metallic-Ions, Antimicrob Agents Ch 10(5) (1976) 856-860.
[35] G. Grass, C. Rensing, M. Solioz, Metallic Copper as an Antimicrobial Surface, Appl Environ Microb 77(5) (2011) 1541-1547.
[36] T. Berger, J. Spadaro, R. Bierman, S. Chapin, R. Becker, Antifungal properties of electrically generated metallic ions, Antimicrob Agents Ch 10(5) (1976) 856-860.
[37] V.N. Golubovich, I.L. Rabotnova, Kinetics of Growth-Inhibition in Candida-Utilis by Silver Ions, Microbiology+ 43(6) (1974) 948-950.
[38] T. Yoshioka, M. Yasuda, H. Miyamura, S. Kikuchi, K. Tokumistu, Structure of Fe-Ag super-laminates fabricated by repeated rolling and mechanically alloyed Fe-Ag powder, Mater Sci Forum 386-3 (2002) 503-508.
[39] L. Liu, Y. Li, K. Yu, M. Zhu, H. Jiang, P. Yu, M. Huang, A novel stainless steel with intensive silver nanoparticles showing superior antibacterial property, Materials Research Letters 9(6) (2021) 270-277.
[40] J.K.L. Lai, C.H. Shek, K.H. Lo, Stainless steels: An introduction and their recent developments, Bentham Science Publishers2012.
[41] E. Folkhard, Welding metallurgy of stainless steels, Springer Science & Business Media2012.
[42] H. Bhadeshia, S.R. Honeycombe, 4-The effects of alloying elements on iron-carbon alloys, Steels (Third Edition) (2006) 71-93.
[43] J. Beddoes, J.G. Parr, Introduction to stainless steels, 3, (1999).
[44] A.J. Sedriks, Corrosion of stainless steel, 2, (1996).
[45] T. Xi, M.B. Shahzad, D.K. Xu, Z.Q. Sun, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Effect of copper addition on mechanical properties, and antibacterial property of 316L stainless steel corrosion resistance, Mat Sci Eng C-Mater 71 (2017) 1079-1085.
[46] J. Banas, A. Mazurkiewicz, The effect of copper on passivity and corrosion behaviour of ferritic and ferritic–austenitic stainless steels, Materials Science and Engineering: A 277(1-2) (2000) 183-191.
[47] O. Barber, A. Khan, E.M. Hartmann, D. Isheim, S. Vaynman, Q.J. Wang, Y.-W. Chung, ANTIMICROBIAL COPPER-CONTAINING STAINLESS STEELS SHOW PROMISE: Given the demonstrated antimicrobial properties of copper, it is incumbent upon materials scientists to design potent antimicrobial copper-containing stainless steels as an economical option, Advanced Materials & Processes 178(6) (2020) 25-29.
[48] C.R. Arciola, D. Campoccia, L. Montanaro, Implant infections: adhesion, biofilm formation and immune evasion, Nature Reviews Microbiology 16(7) (2018) 397-409.
[49] R.D. Klein, S.J. Hultgren, Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies, Nature Reviews Microbiology 18(4) (2020) 211-226.
[50] H.A. Videla, L.K. Herrera, Microbiologically influenced corrosion: looking to the future, International microbiology 8(3) (2005) 169.
[51] Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, Journal of Materials Science & Technology (2020).
[52] T.F. Moriarty, U. Schlegel, S. Perren, R.G. Richards, Infection in fracture fixation: can we influence infection rates through implant design?, Journal of Materials Science: Materials in Medicine 21(3) (2010) 1031-1035.
[53] J. Hendriks, J. Van Horn, H. Van Der Mei, H. Busscher, Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection, Biomaterials 25(3) (2004) 545-556.
[54] D. YACHIA, Overview: role of stents in urology, Journal of endourology 11(6) (1997) 379-382.
[55] E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies, Chemical Society Reviews 35(9) (2006) 780-789.
[56] S. Yuan, S. Pehkonen, Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study, Colloids and Surfaces B: Biointerfaces 59(1) (2007) 87-99.
[57] J. Li, Z. Liu, C. Du, X. Li, Revealing bioinorganic interface in microbiologically influenced corrosion with FIB-SEM/TEM, Corros Sci 173 (2020) 108763.
[58] D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy, Journal of Materials Science & Technology 79 (2021) 101-108.
[59] Y.Q. Li, Y.L. Huang, J.J. Yang, Z.H. Liu, Y.N. Li, X.T. Yao, B. Wei, Z.Z. Tang, S.D. Chen, D.C. Liu, Z. Hu, J.J. Liu, Z.H. Meng, S.F. Nie, X.B. Yang, Bacteria and poisonous plants were the primary causative hazards of foodborne disease outbreak: a seven-year survey from Guangxi, South China, Bmc Public Health 18 (2018).
[60] E.F.S. Authority, E.C.f.D. Prevention, Control, The European Union Summary REPORT on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2012, EFSA Journal 12(2) (2014) 3547.
[61] R. Fink, D. Okanovič, G. Dražič, A. Abram, M. Oder, M. Jevšnik, K. Bohinc, Bacterial adhesion capacity on food service contact surfaces, International journal of environmental health research 27(3) (2017) 169-178.
[62] E. Tuladhar, W.C. Hazeleger, M. Koopmans, M.H. Zwietering, R.R. Beumer, E. Duizer, Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection, Appl Environ Microb 78(21) (2012) 7769-7775.
[63] T. Mattila‐Sandholm, G. Wirtanen, Biofilm formation in the industry: a review, Food reviews international 8(4) (1992) 573-603.
[64] C.H. Owen, Managing Hospital Infection Control for Cost‐Effectiveness: A Strategy for Reducing Infectious Complications, Wiley Online Library, 1987.
[65] A.W. Smith, Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems?, Advanced drug delivery reviews 57(10) (2005) 1539-1550.
[66] J.W.T. Wimpenny, R. Colasanti, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, Fems Microbiology Ecology 22(1) (1997) 1-16.
[67] L.A. Pratt, R. Kolter, Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Molecular Microbiology 30(2) (1998) 285-293.
[68] G.A. O'Toole, R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Molecular Microbiology 28(3) (1998) 449-461.
[69] G.A. O'Toole, R. Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Molecular microbiology 30(2) (1998) 295-304.
[70] Y.T.N. Yu, M. Kleiner, G.J. Velicer, Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria, Journal of Bacteriology 198(23) (2016) 3142-3151.
[71] L. Sbordone, C. Bortolaia, Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease, Clinical Oral Investigations 7(4) (2003) 181-188.
[72] F. Cieplik, E. Zaura, B.W. Brandt, M.J. Buijs, W. Buchalla, W. Crielaard, M.L. Laine, D.M. Deng, R.A.M. Exterkate, Microcosm biofilms cultured from different oral niches in periodontitis patients, Journal of Oral Microbiology 11(1) (2019).
[73] B. Kouidhi, Y.M.A. Al Qurashi, K. Chaieb, Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment, Microbial Pathogenesis 80 (2015) 39-49.
[74] H. Wu, C. Moser, H.Z. Wang, N. Hoiby, Z.J. Song, Strategies for combating bacterial biofilm infections, International Journal of Oral Science 7(1) (2015) 1-7.
[75] P. Zhao, T. Zhao, M. Doyle, J. Rubino, J. Meng, Development of a model for evaluation of microbial cross-contamination in the kitchen, Journal of food protection 61(8) (1998) 960-963.
[76] F. Alam, K. Balani, Adhesion force of staphylococcus aureus on various biomaterial surfaces, Journal of the mechanical behavior of biomedical materials 65 (2017) 872-880.
[77] L. Mei, H.J. Busscher, H.C. van der Mei, Y. Ren, Influence of surface roughness on streptococcal adhesion forces to composite resins, Dental Materials 27(8) (2011) 770-778.
[78] C. Wang, Y. Zhao, S. Zheng, J. Xue, J. Zhou, Y. Tang, L. Jiang, W. Li, Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria: an AFM study, Scanning 37(5) (2015) 313-321.
[79] M.P. Ortega, T. Hagiwara, H. Watanabe, T. Sakiyama, Adhesion behavior and removability of Escherichia coli on stainless steel surface, Food Control 21(4) (2010) 573-578.
[80] L.R. Hilbert, D. Bagge-Ravn, J. Kold, L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International biodeterioration & biodegradation 52(3) (2003) 175-185.
[81] C. Spengler, F. Nolle, J. Mischo, T. Faidt, S. Grandthyll, N. Thewes, M. Koch, F. Müller, M. Bischoff, M.A. Klatt, Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry, Nanoscale 11(42) (2019) 19713-19722.
[82] C. De Giorgi, V. Furlan, A.G. Demir, E. Tallarita, G. Candiani, B. Previtali, Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability, Appl Surf Sci 406 (2017) 199-211.
[83] J. Zhang, J. Huang, C. Say, R.L. Dorit, K. Queeney, Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates, Journal of colloid and interface science 519 (2018) 203-213.
[84] C.-W. Chan, L. Carson, G.C. Smith, A. Morelli, S. Lee, Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering, Appl Surf Sci 404 (2017) 67-81.
[85] S. Abban, M. Jakobsen, L. Jespersen, Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation, Food microbiology 31(2) (2012) 139-147.
[86] S.H. Yoon, N. Rungraeng, W. Song, S. Jun, Superhydrophobic and superhydrophilic nanocomposite coatings for preventing Escherichia coli K-12 adhesion on food contact surface, Journal of Food Engineering 131 (2014) 135-141.
[87] Q. Pan, Y. Cao, W. Xue, D. Zhu, W. Liu, Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property, Langmuir 35(35) (2019) 11414-11421.
[88] M. Mateescu, S. Knopf, F.d.r. Mermet, P. Lavalle, L. Vonna, Role of trapped air in the attachment of staphylococcus aureus on superhydrophobic silicone elastomer surfaces textured by a femtosecond laser, Langmuir 36(5) (2019) 1103-1112.
[89] X. Zhu, D. Jańczewski, S. Guo, S.S.C. Lee, F.J. Parra Velandia, S.L.-M. Teo, T. He, S.R. Puniredd, G.J. Vancso, Polyion multilayers with precise surface charge control for antifouling, ACS applied materials & interfaces 7(1) (2015) 852-861.
[90] R.J. Smith, M.G. Moule, P. Sule, T. Smith, J.D. Cirillo, J.C. Grunlan, Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric, ACS biomaterials science & engineering 3(8) (2017) 1845-1852.
[91] X. Zhu, S. Guo, T. He, S. Jiang, D. Jańczewski, G.J. Vancso, Engineered, robust polyelectrolyte multilayers by precise control of surface potential for designer protein, cell, and bacteria Adsorption, Langmuir 32(5) (2016) 1338-1346.
[92] T. Wang, L. Huang, Y. Liu, X. Li, C. Liu, S. Handschuh-Wang, Y. Xu, Y. Zhao, Y. Tang, Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface, ACS applied materials & interfaces 12(21) (2020) 24432-24441.
[93] J. Hoque, S. Ghosh, K. Paramanandham, J. Haldar, Charge-switchable polymeric coating kills bacteria and prevents biofilm formation in vivo, ACS applied materials & interfaces 11(42) (2019) 39150-39162.
[94] Y. Wang, T.S. Corbitt, S.D. Jett, Y. Tang, K.S. Schanze, E.Y. Chi, D.G. Whitten, Direct visualization of bactericidal action of cationic conjugated polyelectrolytes and oligomers, Langmuir 28(1) (2012) 65-70.
[95] L. Liu, W. Peng, X. Zhang, J. Peng, P. Liu, J. Shen, Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates, Journal of Materials Science & Technology 62 (2021) 96-106.
[96] S. Pogodin, J. Hasan, V.A. Baulin, H.K. Webb, V.K. Truong, T.H.P. Nguyen, V. Boshkovikj, C.J. Fluke, G.S. Watson, J.A. Watson, Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces, Biophysical journal 104(4) (2013) 835-840.
[97] G.S. Watson, D.W. Green, B.W. Cribb, C.L. Brown, C.R. Meritt, M.J. Tobin, J. Vongsvivut, M. Sun, A.-P. Liang, J.A. Watson, Insect analogue to the lotus leaf: a planthopper wing membrane incorporating a low-adhesion, nonwetting, superhydrophobic, bactericidal, and biocompatible surface, ACS applied materials & interfaces 9(28) (2017) 24381-24392.
[98] D.P. Linklater, S. Juodkazis, R.J. Crawford, E.P. Ivanova, Mechanical inactivation of Staphylococcus aureus and Pseudomonas aeruginosa by titanium substrata with hierarchical surface structures, Materialia 5 (2019) 100197.
[99] M. Yang, Y. Ding, X. Ge, Y. Leng, Control of bacterial adhesion and growth on honeycomb-like patterned surfaces, Colloids and Surfaces B: Biointerfaces 135 (2015) 549-555.
[100] M.V. Graham, A.P. Mosier, T.R. Kiehl, A.E. Kaloyeros, N.C. Cady, Development of antifouling surfaces to reduce bacterial attachment, Soft Matter 9(27) (2013) 6235-6244.
[101] A. Pantazi, M. Vardaki, G. Mihai, D. Ionita, A.B. Stoian, M. Enachescu, I. Demetrescu, Understanding surface and interface properties of modified Ti50Zr with nanotubes, Appl Surf Sci 506 (2020) 144661.
[102] L.-N. Wang, J.-L. Luo, Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method, Materials Science and Engineering: C 31(4) (2011) 748-754.
[103] W. Feng, N. Liu, L. Gao, Q. Zhou, L. Yu, X. Ye, J. Huo, X. Huang, P. Li, W. Huang, Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines, Journal of Materials Science & Technology 69 (2021) 188-199.
[104] P. Tang, W. Zhang, Y. Wang, B. Zhang, H. Wang, C. Lin, L. Zhang, Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion, Journal of Nanomaterials 2011 (2011).
[105] J.K. Oh, X. Lu, Y. Min, L. Cisneros-Zevallos, M. Akbulut, Bacterially antiadhesive, optically transparent surfaces inspired from rice leaves, ACS applied materials & interfaces 7(34) (2015) 19274-19281.
[106] W.X. Tian, S. Yu, M. Ibrahim, A.W. Almonaofy, L. He, Q. Hui, Z. Bo, B. Li, G.L. Xie, Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria, J Microbiol 50(4) (2012) 586-593.
[107] H. Qin, Y. Zhao, Z. An, M. Cheng, Q. Wang, T. Cheng, Q. Wang, J. Wang, Y. Jiang, X. Zhang, Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy, Biomaterials 53 (2015) 211-220.
[108] L. Zhang, J. Guo, T. Yan, Y. Han, Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants, Appl Surf Sci 434 (2018) 633-642.
[109] Y.Z. Wan, S. Raman, F. He, Y. Huang, Surface modification of medical metals by ion implantation of silver and copper, Vacuum 81(9) (2007) 1114-1118.
[110] H.-w. Ni, H.-s. Zhang, R.-s. Chen, W.-t. Zhan, K.-f. Huo, Z.-y. Zuo, Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions, International Journal of Minerals Metallurgy and Materials 19(4) (2012) 322-327.
[111] W. Zhang, Y. Zhang, J. Ji, Q. Yan, A. Huang, P.K. Chu, Antimicrobial polyethylene with controlled copper release, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 83(3) (2007) 838-844.
[112] S. Chen, M. Lo, J. Zhang, J. Dong, K. Yang, Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, Acta Metallurgica Sinica(China) 40(3) (2004) 314-318.
[113] D. Sun, D.K. Xu, C.G. Yang, M.B. Shahzad, Z.Q. Sun, J. Xia, J.L. Zhao, T.Y. Gu, K. Yang, G.X. Wang, An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel, Sci Rep-Uk 6 (2016).
[114] L. Nan, G. Ren, D. Wang, K. Yang, Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk, Journal of Materials Science & Technology 32(5) (2016) 445-451.
[115] H. Xiang, P. GUO, Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel I. Microstructure and evolution of copper-rich phase, Acta Metall Sin 48(9) (2012) 1081-1088.
[116] A. Hermas, K. Ogura, S. Takagi, T. Adachi, Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel, Corrosion 51(01) (1995).
[117] H.-T. Lin, W.-T. Tsai, J.-T. Lee, C.-S. Huang, The electrochemical and corrosion behavior of austenitic stainless steel containing Cu, Corros Sci 33(5) (1992) 691-697.
[118] T. Sourisseau, E. Chauveau, B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media, Corros Sci 47(5) (2005) 1097-1117.
[119] J. Jiang, D. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J. Zhao, X. Fan, C. Yang, T. Gu, K. Yang, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corros Sci 113 (2016) 46-56.
[120] Z. Jiao, J. Luan, M. Miller, C.T. Liu, Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles, Acta Materialia 97 (2015) 58-67.
[121] M.D. Mulholland, D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Materialia 59(5) (2011) 1881-1897.
[122] M. Fine, D. Isheim, Origin of copper precipitation strengthening in steel revisited, Scripta Materialia 53(1) (2005) 115-118.
[123] T. Xi, M.B. Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study, Materials Science and Engineering: A 675 (2016) 243-252.
[124] D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale, Acta Materialia 54(3) (2006) 841-849.
[125] R.P. Kolli, D.N. Seidman, The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel, Acta Materialia 56(9) (2008) 2073-2088.
[126] B.M. Gonzalez, C.S.B. Castro, V.T.L. Buono, J.M.C. Vilela, M.S. Andrade, J.M.D.d. Moraes, M.J. Mantel, The influence of copper addition on the formability of AISI 304 stainless steel, Materials Science and Engineering: A 343(1-2) (2003) 51-56.
[127] I.T. Hong, C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 393(1-2) (2005) 213-222.
[128] K.D. Karlin, Metalloenzymes, structural motifs, and inorganic models, Science 261(5122) (1993) 701-708.
[129] C.E. Santo, E.W. Lam, C.G. Elowsky, D. Quaranta, D.W. Domaille, C.J. Chang, G. Grass, Bacterial killing by dry metallic copper surfaces, Appl Environ Microb 77(3) (2011) 794-802.
[130] Y. Yoshida, S. Furuta, E. Niki, Effects of metal chelating agents on the oxidation of lipids induced by copper and iron, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1210(1) (1993) 81-88.
[131] C.E. Santo, N. Taudte, D.H. Nies, G. Grass, Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces, Appl Environ Microb 74(4) (2008) 977-986.
[132] S. Warnes, S. Green, H. Michels, C. Keevil, Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs, Appl Environ Microb 76(16) (2010) 5390-5401.
[133] Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, K. Suzuki, Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus, Appl Environ Microb 78(4) (2012) 951-955.
[134] U. Bogdanović, V. Lazić, V. Vodnik, M. Budimir, Z. Marković, S. Dimitrijević, Copper nanoparticles with high antimicrobial activity, Materials Letters 128 (2014) 75-78.
[135] M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, F. Mücklich, Role of copper oxides in contact killing of bacteria, Langmuir 29(52) (2013) 16160-16166.
[136] M. Vincent, R.E. Duval, P. Hartemann, M. Engels‐Deutsch, Contact killing and antimicrobial properties of copper, Journal of applied microbiology 124(5) (2018) 1032-1046.
[137] M. Zeiger, M. Solioz, H. Edongué, E. Arzt, A.S. Schneider, Surface structure influences contact killing of bacteria by copper, MicrobiologyOpen 3(3) (2014) 327-332.
[138] I. Hong, C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Materials Science and Engineering: A 393(1-2) (2005) 213-222.
[139] J.H. Li, G. Wang, H.Q. Zhu, M. Zhang, X.H. Zheng, Z.F. Di, X.Y. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci Rep-Uk 4 (2014).
[140] T. Yokota, M. Tochihara, M. Ohta, Silver dispersed stainless steel with antibacterial property, Kawasaki steel technical report (46) (2002) 37-41.
[141] S.M. Yang, Y.C. Chen, Y.T. Pan, D.Y. Lin, Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel, Materials Science & Engineering C-Materials for Biological Applications 63 (2016) 376-383.
[142] K.H. Liao, K.L. Ou, H.C. Cheng, C.T. Lin, P.W. Peng, Effect of silver on antibacterial properties of stainless steel, Appl Surf Sci 256(11) (2010) 3642-3646.
[143] K. Cho, J. Gurland, The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures, Metallurgical Transactions A 19(8) (1988) 2027-2040.
[144] W. Morrison, Influence of silver on structure and properties of low-carbon steel, Materials science and technology 1(11) (1985) 954-960.
[145] C.L. Fox, Silver sulfadiazine—a new topical therapy for pseudomonas in burns: therapy of pseudomonas infection in burns, Archives of surgery 96(2) (1968) 184-188.
[146] R.O. Becker, J. Spadaro, Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report, JBJS 60(7) (1978) 871-881.
[147] J. Spadaro, T. Berger, S. Barranco, S. Chapin, R. Becker, Antibacterial effects of silver electrodes with weak direct current, Antimicrob Agents Ch 6(5) (1974) 637-642.
[148] Q.L. Feng, J. Wu, G.Q. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J Biomed Mater Res 52(4) (2000) 662-668.
[149] A.C. Burdusel, O. Gherasim, A.M. Grumezescu, L. Mogoanta, A. Ficai, E. Andronescu, Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview, Nanomaterials 8(9) (2018) 25.
[150] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J Nanopart Res 12(5) (2010) 1531-1551.
[151] T. Hamouda, J. Baker Jr, Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram‐negative bacilli, Journal of applied microbiology 89(3) (2000) 397-403.
[152] R.F. Berendt, Survival of Legionella-Pneumophila in Aerosols - Effect of Relative-Humidity, J Infect Dis 141(5) (1980) 689-689.
[153] L. Gabrielyan, A. Hovhannisyan, V. Gevorgyan, M. Ananyan, A. Trchounian, Antibacterial effects of iron oxide (Fe 3 O 4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms, Applied microbiology and biotechnology 103(6) (2019) 2773-2782.
[154] L.J. Reed, H. Muench, A simple method of estimating fifty per cent endpoints, American journal of epidemiology 27(3) (1938) 493-497.
[155] M. Florez-Zamora, Comparative study of Al-Ni-Mo alloys obtained by mechanical alloying in different ball mills, Rev. Adv. Mater. Sci 18 (2008) 301-304.
[156] P. Gilman, J. Benjamin, Mechanical alloying, Annual review of materials science 13(1) (1983) 279-300.
[157] M.K. Miller, C.L. Fu, M. Krcmar, D.T. Hoelzer, C.T. Liu, Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels, Frontiers of Materials Science in China 3(1) (2009) 9-14.
[158] A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nature Materials 10(12) (2011) 922-926.
[159] J. Dawidowski, J.R. Granada, J.R. Santisteban, F. Cantargi, L.A.R. Palomino, Neutron scattering lengths and cross sections, Experimental Methods in the Physical Sciences, Elsevier2013, pp. 471-528.
[160] I.S. Anderson, A.J. Hurd, R.L. McGreevy, Neutron scattering applications and techniques, Springer2008.
[161] S.A. Briggs, P.D. Edmondson, K.C. Littrell, Y. Yamamoto, R.H. Howard, C.R. Daily, K.A. Terrani, K. Sridharan, K.G. Field, A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys, Acta Materialia 129 (2017) 217-228.
[162] M. Miller, B. Wirth, G. Odette, Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data, Materials Science and Engineering: A 353(1-2) (2003) 133-139.
[163] A. Allen, D. Gavillet, J. Weertman, SANS and TEM studies of isothermal M2C carbide precipitation in ultrahigh strength AF1410 steels, Acta metallurgica et materialia 41(6) (1993) 1869-1884.
[164] G.J. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals 11(1) (1998) 27-32.
[165] S.A. Harris, R.J. Enger, B.L. Riggs, T.C. Spelsberg, Development and Characterization of a Conditionally Immortalized Human Fetal Osteoblastic Cell-Line, J Bone Miner Res 10(2) (1995) 178-186.
[166] N. Kurgan, Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel, Mater Design 52 (2013) 995-998.
[167] N. Kurgan, R. Varol, Mechanical properties of P/M 316L stainless steel materials, Powder Technology 201(3) (2010) 242-247.
[168] K. Chandra, V. Kain, R. Tewari, Microstructural and electrochemical characterisation of heat-treated 347 stainless steel with different phases, Corros Sci 67 (2013) 118-129.
[169] J. Jiang, D.K. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J.L. Zhao, X.M. Fan, C.G. Yang, T.Y. Gu, K. Yang, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corros Sci 113 (2016) 46-56.
[170] S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review, Protection of Metals and Physical Chemistry of Surfaces 54(5) (2018) 976-989.
[171] S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar, Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells, Toxicol Appl Pharm 236(3) (2009) 310-318.
[172] I.P. Mukha, A.M. Eremenko, N.P. Smirnova, A.I. Mikhienkova, G.I. Korchak, V.F. Gorchev, A.Y. Chunikhin, Antimicrobial Activity of Stable Silver Nanoparticles of a Certain Size, Appl Biochem Micro+ 49(2) (2013) 199-206.
[173] M.M. Cowan, K.Z. Abshire, S.L. Houk, S.M. Evans, Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel, J Ind Microbiol Biot 30(2) (2003) 102-106.
[174] K.S. Tweden, J.D. Cameron, A.J. Razzouk, W.R. Holmberg, S.J. Kelly, Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves, J Heart Valve Dis 6(5) (1997) 553-561.
[175] Y. Dong, X. Li, L. Tian, T. Bell, R.L. Sammons, H. Dong, Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding, Acta Biomater 7(1) (2011) 447-457.
[176] M. Hjelm, L.R. Hilbert, P. Møller, L. Gram, Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces, Journal of applied microbiology 92(5) (2002) 903-911.
[177] J. Capek, M. Machova, M. Fousova, J. Kubasek, D. Vojtech, J. Fojt, E. Jablonska, J. Lipov, T. Ruml, Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting, Materials Science & Engineering C-Materials for Biological Applications 69 (2016) 631-639.
[178] M.H. Li, T.Y. Yin, Y.Z. Wang, F.F. Du, X.Z. Zou, H. Gregersen, G.X. Wang, Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro, Materials Science & Engineering C-Materials for Biological Applications 43 (2014) 641-648.
[179] R.O. Darouiche, Current concepts - Treatment of infections associated with surgical implants, New Engl J Med 350(14) (2004) 1422-1429.
[180] D. Campoccia, L. Montanaro, C.R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials 27(11) (2006) 2331-2339.
[181] I. Gould, Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control, Int J Antimicrob Ag 28(5) (2006) 379-384.
[182] Haley RW, Schaberg DR, Crossley KB, Von Allmen SD, M. JEJ, Managing hospital infection control for cost-effectiveness: a strategy for reducing infectious complications. , Chicago: Am Hosp Publishing; (1985).
[183] M. Wassall, M. Santin, C. Isalberti, M. Cannas, S.P. Denyer, Adhesion of bacteria to stainless steel and silver‐coated orthopedic external fixation pins, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials 36(3) (1997) 325-330.
[184] K. Mediaswanti, Bactericidal Coatings for Bone Implant Applications, J Biomim Biomater Bi 28 (2016) 53-56.
[185] X. Bai, K. More, C.M. Rouleau, A. Rabiei, Functionally graded hydroxyapatite coatings doped with antibacterial components, Acta Biomater 6(6) (2010) 2264-2273.
[186] J. Zhao, T. Xi, K. Yang, C. Yang, A kind of high-performance austenitic antibacterial stainless steel used in chemical production, China, 2019.
[187] T. Hayashi, P. Sarosi, J.H. Schneibel, M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steels, Acta Materialia 56(7) (2008) 1407-1416.
[188] G. Odette, M. Alinger, B. Wirth, Recent developments in irradiation-resistant steels, Annu. Rev. Mater. Res. 38 (2008) 471-503.
[189] J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, D. Sturm, Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Materialia 61(8) (2009) 793-796.
[190] S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, Journal of Nuclear Materials 204 (1993) 65-73.
[191] J.J. Fischer, Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors, US, 1978.
[192] Y. Shirosaki, K. Tsuru, S. Hayakawa, A. Osaka, M.A. Lopes, J.D. Santos, M.H. Fernandes, In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes, Biomaterials 26(5) (2005) 485-493.
[193] J.Q. Wang, S. Liu, B. Xu, J.Y. Zhang, M.Y. Sun, D.A.Z. Li, Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy, International Journal of Extreme Manufacturing 3(3) (2021).
[194] C. Suryanarayana, Mechanical alloying and milling, Progress in materials science 46(1-2) (2001) 1-184.
[195] F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer, A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization, Journal of Materials Science: Materials in Medicine 16(10) (2005) 883-888.
[196] J. Hardes, A. Streitburger, H. Ahrens, T. Nusselt, C. Gebert, W. Winkelmann, A. Battmann, G. Gosheger, The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines, Sarcoma 2007 (2007).
[197] S.Y. Park, A.K. Bera, Maximum entropy autoregressive conditional heteroskedasticity model, Journal of Econometrics 150(2) (2009) 219-230.
[198] A. Shi, C. Zhu, S. Fu, R. Wang, G. Qin, D. Chen, E. Zhang, What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Materials Science and Engineering: C 109 (2020) 110548.
[199] N. Ciftci, N. Ellendt, G. Coulthard, E.S. Barreto, L. Mädler, V. Uhlenwinkel, Novel cooling rate correlations in molten metal gas atomization, Metallurgical and Materials Transactions B 50(2) (2019) 666-677.
[200] G. Chen, H. FU, Advanced metal materials with inequilibrium solidification, Beijing: Science Press, 2004, p. 26−45.
[201] M.C. Flemings, Solidification processing, Metallurgical transactions 5(10) (1974) 2121-2134.
[202] A. Guinier, G. Fournet, K.L. Yudowitch, Small-angle scattering of X-rays, (1955).
[203] S.W. Lovesey, Theory of neutron scattering from condensed matter, (1984).
[204] R.J. Lu, X. Zhao, J. Li, P.H. Niu, B. Yang, H.L. Wu, W.L. Wang, H. Song, B.Y. Huang, N. Zhu, Y.H. Bi, X.J. Ma, F.X. Zhan, L. Wang, T. Hu, H. Zhou, Z.H. Hu, W.M. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J.Y. Yuan, Z.H. Xie, J.M. Ma, W.J. Liu, D.Y. Wang, W.B. Xu, E.C. Holmes, G.F. Gao, G.Z. Wu, W.J. Chen, W.F. Shi, W.J. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395(10224) (2020) 565-574.
[205] J.K. Taubenberger, D.M. Morens, 1918 influenza: the mother of all pandemics, Emerging Infectious Diseases 12(1) (2006) 15-22.
[206] D.K.W. Chu, Y. Pan, S.M.S. Cheng, K.P.Y. Hui, P. Krishnan, Y.Z. Liu, D.Y.M. Ng, C.K.C. Wan, P. Yang, Q.Y. Wang, M. Peiris, L.L.M. Poon, Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia, Clinical Chemistry 66(4) (2020) 549-555.
[207] K.A. Prather, C.C. Wang, R.T. Schooley, Reducing transmission of SARS-CoV-2, Science 368(6498) (2020) 1422-1424.
[208] S. Michie, R. West, M.B. Rogers, C. Bonell, G.J. Rubin, R. Amlot, Reducing SARS-CoV-2 transmission in the UK: A behavioural science approach to identifying options for increasing adherence to social distancing and shielding vulnerable people, Br J Health Psychol (2020).
[209] R. Mittal, R. Ni, J.H. Seo, The flow physics of COVID-19, Journal of Fluid Mechanics 894 (2020).
[210] A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, L. Kvitek, Antifungal activity of silver nanoparticles against Candida spp., Biomaterials 30(31) (2009) 6333-6340.
[211] H.J. Klasen, Historical review of the use of silver in the treatment of burns. I. Early uses, Burns 26(2) (2000) 117-130.
[212] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv 27(1) (2009) 76-83.
[213] H.H. Lara, E.N. Garza-Trevino, L. Ixtepan-Turrent, D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, Journal of Nanobiotechnology 9 (2011).
[214] D.Q. Zhong Li, Yan Xu, Enze Zhou, Chuntian Yang, Xinyi Yuan, Yiping Lu, Ji-Dong Gu, Sand Wolfgang, Dake Xu, Fuhui Wang,, Cu-bearing high-entropy alloys with excellent antiviral properties, Journal of Materials Science & Technology 84 (2021) 59-64.
[215] R. Hirose, H. Ikegaya, Y. Naito, N. Watanabe, T. Yoshida, R. Bandou, T. Daidoji, Y. Itoh, T. Nakaya, Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Influenza Virus on Human Skin: Importance of Hand Hygiene in Coronavirus Disease 2019 (COVID-19), Clinical Infectious Diseases (2020).
[216] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity, Biomaterials 23(3) (2002) 887-892.
[217] Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, P.Y. Xiong, Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions, Thin Solid Films 492(1-2) (2005) 93-100.
[218] S. Behzadinasab, A. Chin, M. Hosseini, L. Poon, W.A. Ducker, A Surface Coating that Rapidly Inactivates SARS-CoV-2, Acs Applied Materials & Interfaces 12(31) (2020) 34723-34727.
[219] M. Huang, L. Liu, An antimicrobial stainless steel containing Cu and its fabricaiton method. Patent Application number: 202010730748.2 China 2020.
[220] L.T. Liu, Y.Z. Li, K.P. Yu, M.Y. Zhu, H. Jiang, P. Yu, M.X. Huang, A novel stainless steel with intensive silver nanoparticles showing superior antibacterial property, Materials Research Letters 9(6) (2021) 270-277.
[221] S. Yesiltepe, M.K. Sesen, High-temperature oxidation kinetics of Cu bearing carbon steel, Sn Applied Sciences 2(4) (2020).
[222] N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci, Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties, Chinese Science Bulletin 57(15) (2012) 1873-1878.
[223] J. Beddoes, K. Bucci, The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants, Journal of materials science: Materials in medicine 10(7) (1999) 389-394.
[224] K.-K. Chew, S.H.S. Zein, A.L. Ahmad, The corrosion scenario in human body: Stainless steel 316L orthopaedic implants, (2012).
[225] J. Walczak, F. Shahgaldi, F. Heatley, In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products, Biomaterials 19(1-3) (1998) 229-237.
[226] Y. Zhang, E. Feng, W. Mo, Y. Lv, R. Ma, S. Ye, X. Wang, P. Yu, On the microstructures and fatigue behaviors of 316L stainless steel metal injection molded with gas-and water-atomized powders, Metals 8(11) (2018) 893.
[227] R. Tellier, Y.G. Li, B.J. Cowling, J.W. Tang, Recognition of aerosol transmission of infectious agents: a commentary, Bmc Infectious Diseases 19 (2019).
[228] R.L. Hu, S.R. Li, F.J. Kong, R.J. Hou, X.L. Guan, F. Guo, Inhibition effect of silver nanoparticles on herpes simplex virus 2, Genetics and Molecular Research 13(3) (2014) 7022-7028.
[229] E.L. Zhang, C. Liu, A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property, Mat Sci Eng C-Mater 69 (2016) 134-143.
[230] K.R. Bright, E.E. Sicairos-Ruelas, P.M. Gundy, C.P. Gerba, Assessment of the Antiviral Properties of Zeolites Containing Metal Ions, Food and Environmental Virology 1(1) (2009) 37-41.
[231] L. Yang, X.S. Ning, Q.F. Xiao, K.X. Chen, H.P. Zhou, Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms, Journal of Biomedical Materials Research Part B-Applied Biomaterials 81B(1) (2007) 50-56.
[232] S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr, A.D. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions, Letters in Applied Microbiology 25(4) (1997) 279-283.
[233] Y. Mori, T. Ono, Y. Miyahira, V.Q. Nguyen, T. Matsui, M. Ishihara, Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus, Nanoscale Research Letters 8 (2013).
[234] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl Environ Microb 73(6) (2007) 1712-1720.
[235] S. Liau, D. Read, W. Pugh, J. Furr, A. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions, Letters in applied microbiology 25(4) (1997) 279-283.
[236] J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1, Journal of nanobiotechnology 3(1) (2005) 1-10.
[237] I.H. Hirose R, Naito Y, Watanabe N, Yoshida T, Bandou R, Daidoji T, Itoh Y, Nakaya T., Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19., Clin Infect Dis (2020).
[238] M. Horie, H. Ogawa, Y. Yoshida, K. Yamada, A. Hara, K. Ozawa, S. Matsuda, C. Mizota, M. Tani, Y. Yamamoto, M. Yamada, K. Nakamura, K. Imai, Inactivation and morphological changes of avian influenza virus by copper ions, Archives of Virology 153(8) (2008) 1467-1472.
[239] T. Ishida, Antiviral Activities of Cu2+ Ions in Viral Prevention, Replication, RNA Degradation, and for Antiviral Efficacies of Lytic Virus, ROS-Mediated Virus, Copper Chelation, 2018.
[240] S.L. Warnes, S.M. Green, H.T. Michels, C.W. Keevil, Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNAs, Appl Environ Microb 76(16) (2010) 5390-5401.
[241] L. Nan, G.G. Ren, D.H. Wang, K. Yang, Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk, Journal of Materials Science & Technology 32(5) (2016) 445-451.
[242] S.L. Warnes, C.W. Keevil, Inactivation of Norovirus on Dry Copper Alloy Surfaces, Plos One 8(9) (2013).
修改评论