中文版 | English
题名

拓扑材料的超导相关输运性质研究

其他题名
SUPERCONDUCTING TRANSPORT PROPERTIES OF TOPOLOGICAL MATERIALS
姓名
姓名拼音
FU Peihao
学号
11849471
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
吴健生
导师单位
量子科学与工程研究院
论文答辩日期
2022-05-20
论文提交日期
2022-07-18
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

拓扑材料,包括拓扑绝缘体与半金属,一直在凝聚态物理学的研究中获得广泛的兴趣。在时间反演对称的保护下,拓扑绝缘体中存在螺旋边缘态。这使得在其边界上运动的电子具有自旋-动量锁定的特性。这一输运特性使其具成为新一代的自旋电子学器件的潜质。另一方面,虽然拓扑半金属不具有体能隙,但其中也允许非平庸的边界态的存在。一般来说,根据能带相交的几何结构,拓扑半金属可进一步分成节点半金属和节点环半金属两大类。正如螺旋边缘态在拓扑绝缘体中所扮演的角色一样,拓扑半金属中能带相交的信息以及相应的表面态都决定了它们输运性质。尽管经过多年发展,关于拓扑材料的探测与应用的研究已经十分详尽,但是关于它们与超导相互作用时的输运性质却并未被充分研究。基于此,本文研究内容主要包含两方面:在以拓扑材料作为中间层而超导体作为电极的约瑟夫森结中,拓扑材料对输运特性的影响;以及,在拓扑材料中引入本征的超导配对后所形成的拓扑超导体的特征输运信号。具体研究内容如下:

  1. 研究了以光调控拓扑绝缘体为中间层的约瑟夫森结的输运性质。在此结构中,约瑟夫森流的流相关系可以仅仅由电学参量调制,其中包括了由门电压控制的0-π 相变和由横向电压控制的反常相移。这些现象都是由光诱导的各向异性螺旋边缘态引起的。由于各向异性的存在,对体系施加电场的效果与对其施加一个塞曼场的效果是一样的,且塞曼场的方向自动地与边缘态的自旋排列方向匹配。这大大减小了在以往在拓扑绝缘体-约瑟夫森结的实验中由于调控磁场所带来的困难。这一研究为产生螺旋超电流和设计电调制拓扑超导器件提供了可能的应用方案。
  2. 研究了光调控狄拉克半金属中外尔点产生和湮灭现象的约瑟夫森特征。外尔点的产生和湮灭现象是与外尔费米子有关的独特拓扑现象。在光调控下的狄拉克半金属构成的约瑟夫森结中,超流出现了双模振荡与0-π 相变。这些信号可以表征外尔点的产生。这是一种有别于磁信号的证据。进一步研究表明,双模振荡来源于手征性翻转和手征性守恒的安德列夫反射过程,而前者正是由于外尔点的产生所引起的。另一方面,当外尔点湮灭后,可以通过在界面处放置两个铁磁体以激活自旋翻转的安德列夫反射过程,从而实现反常约瑟夫森流。这为利用外尔半金属构造超导自旋电子学器件提供了一个可行的方案。
  3. 研究了拓扑节点环超导体及其诱导的马约拉纳鼓面态的输运特性。本论文原创性地提出了一种拓扑节点环超导体,并证明了其中马约拉纳鼓面态的存在。这样一种二维的马约拉纳态,其存在有有助于:精确地在正常金属-拓扑节点环半金属异质结中确定节点环的半径;以及在正常金属-拓扑节点环半金属-正常金属异质结中产生自旋极化巨关联电流。这一研究弥补了实验上对节点环半金属探测的不足,并且为构造拓扑超导自旋电子学器件提供了可行性方案。
  4. 研究了量子限制下的拓扑节点环超导体中多个马约拉纳表面态引起的安德列夫反射过程。量子限制效应使得拓扑节点环超导体表面存在多个马约拉纳态。本论文探讨了两种情况下由这些表面态引起的安德列夫反射的性质,分别是:在正常的金属-势阱-拓扑结点环超导体结中,安德列夫反射的动量空间分布信息需要通过对电导细致地分析才能获得;当用两层电极薄膜与拓扑结点环超导体接触时,安德烈夫反射表现出干涉震荡的图样。对这一震荡现象的解释需要推广共振安德列夫反射的理论框架,并认为在此时马约拉纳表面态应该被视为沿着平行于接触界面方向分布的驻波。这两种情况分别为探测马约拉纳表面态在动量空间和实空间中的分布提供了可能的实验方案。而利用马约拉纳表面态在异质结的横向方向的非局域性,安德列夫反射的干涉图样为在具有量子限制的系统中测量马约拉纳束缚态提供了另一种途径。
关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-06
参考文献列表

[1] Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and Applications[J]. Reviews of Modern Physics, 2004, 76(2): 323–410.
[2] Hasan M Z, Kane C L. Colloquium : Topological Insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045–3067.
[3] Qi X-L, Zhang S-C. The Quantum Spin Hall Effect and Topological Insulators[J]. Physics Today, 2010, 63(1): 33–38.
[4] Shen S-Q, Shan W-Y, Lu H-Z. Topological Insulator and The Dirac Equation[J]. Spin, 2011, 01(01): 33–44.
[5] Qi X-L, Zhang S-C. Topological Insulators and Superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057–1110.
[6] Ren Y, Qiao Z, Niu Q. Topological Phases in Two-Dimensional Materials: A Review[J]. Reports On Progress in Physics, 2016, 79(6): 066501.
[7] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[8] Kane C L, Mele E J. Z2 Topological Order and The Quantum Spin Hall Effect[J]. Physical Review Letters, 2005, 95(14): 146802 (2005).
[9] Wu C, Bernevig B A, Zhang S-C, Helical Liquid and The Edge of Quantum Spin Hall Systems[J]. Physical Review Letters, 2006, 96(10): 106401
[10] Bernevig B A, Hughes T L, Zhang S-C. Quantum Spin Hall Effect and Topological Phase Transition in Hgte Quantum Wells[J]. Science, 2006, 314(5806): 1757–1761.
[11] König M, Wiedmann S, Brune C Et Al. Quantum Spin Hall Insulator State in Hgte Quantum Wells[J]. Science, 2007, 318(5851): 766–770.
[12] König M, Buhmann H, W. Molenkamp L Et Al. The Quantum Spin Hall Effect: Theory and Experiment[J]. Journal of The Physical Society of Japan, 2008, 77(3): 031007.
[13] Qi X-L, Hughes T L, Zhang S-C. Fractional Charge and Quantized Current in The Quantum Spin Hall State[J]. Nature Physics, 2008, 4(4): 273–276.
[14] Liu C, Hughes T L, Qi X-L Et Al. Quantum Spin Hall Effect in Inverted Type-Ii Semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601.
[15] Du L, Knez I, Sullivan G Et Al. Robust Helical Edge Transport in Gated Inas/Gasb Bilayers[J]. Physical Review Letters, 2015, 114(9): 096802.
[16] Qian X, Liu J, Fu L, Li J. Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides[J]. Science, 2014, 346(6215), 1344-1347.
[17] Wu S, Fatemi V, Gibson Q D Et Al. Observation of The Quantum Spin Hall Effect Up To 100 Kelvin In A Monolayer Crystal[J]. Science, 2018, 359(6371): 76–79.
[18] Bernevig B A, Hughes T L. Topological Insulators and Topological Superconductors[M]. United Kingdom: Princeton University Press, 2013:100.
[19] Asbóth J K, Oroszlány L, Pályi A. A Short Course On Topological Insulators: Band Structure and Edge States in One and Two Dimensions[M]. Switzerland: Springer International Publishing, 2016:1-100.
[20] Shen S-Q. Topological Insulators: Dirac Equation in Condensed Matters[M]. Switzerland: Springer International Publishing, 2013:1-100.
[21] Bansil A, Lin H, Das T. Colloquium : Topological Band Theory[J]. Reviews of Modern Physics, 2016, 88(2): 021004.
[22] Volovik G. The Universe in A Helium Droplet[M]. Oxford: Oxford University, 2003.
[23] Wu Y S, Zhang S C. Topological Quantization of the Spin Hall Effect in Two-Dimensional Paramagnetic Semiconductors[J]. Physical Review B, 2006, 74(08): 085308.
[24] Zhang H, Liu C X, Qi X L, Et Al. Topological Insulators in Bi2se3, Bi2te3 and Sb2te3 with A Single Dirac Cone On The Surface[J]. Nature Physics, 2009, 5(6): 438-442.
[25] Zhang H J, Liu C X, Qi X L, Et Al. Electronic Structures and Surface States of the Topological Insulator Bi1−Xsbx[J]. Physical Review B, 2009, 80(08): 085307.
[26] Xia Y, Qian D, Hsieh D, Et Al. Observation of A Large-Gap Topological-Insulator Class with A Single Dirac Cone On the Surface[J]. Nature Physics, 2015, 5(6): 398-402.
[27] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermions at The Surface of A Topological Insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[28] Fu L, Kane C L. Josephson Current and Noise at A Superconductor/Quantum-Spin-Hall-Insulator/Superconductor Junction[J]. Physical Review B, 2009, 79(16): 161408.
[29] Chang C Z, Zhang J, Feng X, Et Al. Experimental Observation of the Quantum Anomalous Hall Effect in A Magnetic Topological Insulator[J]. Science, 2013, 340(6129): 167-170.
[30] Tokura Y, Yasuda K, Tsukazaki A. Magnetic Topological Insulators[J]. Nature Reviews Physics, 2019, 1(2): 126–143.
[31] Carlson E K. An Intrinsically Magnetic Topological Insulator[J]. Physics, 2020, 13: S119.
[32] Nadeem M, Hamilton A R, Fuhrer M S Et Al. Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin‐Gapless Semiconductors—A Perspective Review[J]. Small, 2020, 16(42): 1904322.
[33] Ning W, Mao Z. Recent Advancements in The Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J]. Apl Materials, 2020, 8(9): 090701.
[34] Wang P, Ge J, Li J Et Al. Intrinsic Magnetic Topological Insulators[J]. The Innovation, 2021, 2(2): 100098.
[35] He Q L, Hughes T L, Armitage N P et al. Topological Spintronics and Magnetoelectronics[J]. Nature Materials 2022, 21(1): 15–23.
[36] Tuegel T I, Chua V, Hughes T L. Embedded Topological Insulators[J]. Physical Review B, 2019, 100(11): 115126.
[37] Pozo O, Repellin C, Grushin A G. Quantization in Chiral Higher Order Topological Insulators: Circular Dichroism and Local Chern Marker[J]. Physical Review Letters, 2019, 123(24): 247401.
[38] Schindler F, Cook A M, Vergniory M G Et Al. Higher-Order Topological Insulators[J]. Science Advances, 2018, 4(6): Eaat0346.
[39] Benalcazar W A, Bernevig B A, Hughes T L, 2017. Electric Multipole Moments, Topological Multipole Moment Pumping, And Chiral Hinge States in Crystalline Insulators[J]. Physical Review B, 96(24): 245115.
[40] Benalcazar W A, Bernevig B A, Hughes T L, 2017. Quantized Electric Multipole Insulators[J]. Science, 357(6346): 61–66.
[41] Wang A-Q, Ye X-G, Yu D-P Et Al. Topological Semimetal Nanostructures: From Properties to Topotronics[J]. Acs Nano, 2020, 14(4): 3755–3778.
[42] Wang S, Lin B C, Wang A Q Et Al. Quantum Transport in Dirac and Weyl Semimetals: A Review[J]. Advances in Physics: X, 2017, 2(3): 518–544.
[43] Hasan M Z, Chang G, Belopolski I Et Al. Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter[J]. Nature Reviews Materials, 2021, 6(9): 784–803.
[44] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac Semimetals In Three-Dimensional Solids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[45] Lv B Q, Qian T, Ding H. Experimental Perspective On Three-Dimensional Topological Semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[46] Young S M, Zaheer S, Teo J C Y Et Al. Dirac Semimetal in Three Dimensions[J]. Physical Review Letters, 2012, 108(14): 140405.
[47] Brahlek M, Bansal N, Koirala N Et Al. Topological-Metal to Band-Insulator Transition Bi1xin2se3 Thin Films [J]. Physical Review Letters, 2012, 109(18): 186403.
[48] Wang Z, Sun Y, Chen X-Q Et Al. Dirac Semimetal and Topological Phase Transitions In A3bi (A = Na, K, Rb) [J]. Physical Review B, 2012, 85(19): 195320.
[49] Liu Z K, Zhou B, Zhang Y Et Al, 2014. Discovery of A Three-Dimensional Topological Dirac Semimetal, Na3bi[J]. Science, 2014, 343(6173): 864–867.
[50] Xiong J, Kushwaha S K, Liang T Et Al. Evidence for The Chiral Anomaly In The Dirac Semimetal Na 3 Bi[J]. Science, 2015, 350(6259): 413–416.
[51] Wang Z, Weng H, Wu Q Et Al. Three-Dimensional Dirac Semimetal and Quantum Transport In Cd3as2[J]. Physical Review B, 2013, 88(12): 125427.
[52] Borisenko S, Gibson Q, Evtushinsky D Et Al. Experimental Realization Of A Three-Dimensional Dirac Semimetal [J]. Physical Review Letters, 2014, 113(02): 027603.
[53] Neupane M, Xu S Y, Sankar R Et Al. Observation of A Three-Dimensional Topological Dirac Semimetal Phase In High-Mobility Cd3as2 [J]. Nature Communications, 2014, 5(1): 3786.
[54] Weng H, Fang C, Fang Z, Et Al. Weyl Semimetal Phase In Noncentrosymmetric Transition Metal Monophosphides[J]. Physical Review X, 2014, 5(1): 011029.
[55] Huang S M, Xu S Y, Belopolski I, Et Al. A Weyl Fermion Semimetal With Surface Fermi Arcs In The Transition Metal Monopnictide Taas Class[J]. Nature Communications, 2015, 6: 7373.
[56] Chen X. Experimental Discovery of Weyl Semimetal Taas[J]. Science China Materials, 2015, 58(9): 675.
[57] Yang K-Y, Lu Y-M, Ran Y. Quantum Hall Effects in A Weyl Semimetal: Possible Application In Pyrochlore Iridates[J]. Physical Review B, 2011, 84(7): 075129.
[58] Wan X, Turner A M, Vishwanath A Et Al. Topological Semimetal and Fermi-Arc Surface States In The Electronic Structure Of Pyrochlore Iridates[J]. Physical Review B, 2011, 83(20): 205101.
[59] Burkov A A, Balents L. Weyl Semimetal in A Topological Insulator Multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[60] Sun J-P. Topological Nodal Line Semimetal In Non-Centrosymmetric Pbtas2[J]. Chinese Physics Letters, 2017, 34(7): 077101.
[61] Bian G, Chang T-R, Sankar R Et Al. Topological Nodal-Line Fermions in Spin-Orbit Metal Pbtase2[J]. Nature Communications, 2016, 7(1): 10556.
[62] Xu Q, Yu R, Fang Z Et Al. Topological Nodal Line Semimetals In The Ca3p2 Family Of Materials[J]. Physical Review B, 2017, 95(4): 045136.
[63] Bian G, Chang T-R, Zheng H Et Al. Drumhead Surface States And Topological Nodal-Line Fermions In Tltase2[J]. Physical Review B, 2016, 93(12): 121113.
[64] Yu R, Weng H, Fang Z Et Al. Topological Node-Line Semimetal And Dirac Semimetal State In Antiperovskite Cu3pdn[J]. Physical Review Letters, 2015, 115(3): 036807.
[65] Fang C, Chen Y, Kee H-Y Et Al. Topological Nodal Line Semimetals With And Without Spin-Orbital Coupling[J]. Physical Review B, 2015, 92(8): 081201.
[66] Fang C, Weng H, Dai X Et Al. Topological Nodal Line Semimetals[J]. Chinese Physics B, 2016, 25(11): 117106.
[67] Bzdušek T, Wu Q S, Rüegg A Et Al,. Nodal-Chain Metals[J]. Nature 2016, 538(7623): 75–78.
[68] Yan Q, Liu R, Yan Z Et Al Experimental Discovery Of Nodal Chains[J]. Nature Physics, 2018., 14(5): 461–464.
[69] Yan Z, Bi R, Shen H Et Al. Nodal-Link Semimetals[J]. Physical Review B, 2017, 96(4): 041103.
[70] Zhou Y, Xiong F, Wan X Et Al. Hopf-Link Topological Nodal-Loop Semimetals[J]. Physical Review B, 2018, 97(15): 155140.
[71] Guan J-H, Zhang Y-Y, Wang S-S Et Al. Barrier Tunneling And Loop Polarization In Hopf Semimetals[J]. Physical Review B, 2020, 102(6): 064203.
[72] Wang Y, Hu H, Chen S. Effect Of An Incommensurate Potential On Nodal-Link Semimetals[J]. Physical Review B, 2018, 98(20): 205410.
[73] Bi R, Yan Z, Lu L Et Al. Nodal-Knot Semimetals[J]. Physical Review B, 2017, 96(20): 201305.
[74] Wu Q, Soluyanov A A, Bzdušek T. Non-Abelian Band Topology In Noninteracting Metals[J]. Science, 2019, 365(6459): 1273–1277.
[75] 曾谨言. 量子力学.第5版[M]. 科学出版社, 2013.
[76] Peres N M R. Colloquium: The Transport Properties Of Graphene: An Introduction[J]. Reviews Of Modern Physics, 2010, 82(3): 2673–2700.
[77] Beenakker C W J. Colloquium : Andreev Reflection And Klein Tunneling In Graphene[J]. Reviews Of Modern Physics, 2008, 80(4): 1337–1354.
[78] Das Sarma S, Adam S, Hwang E H Et Al. Electronic Transport In Two-Dimensional Graphene[J]. Reviews Of Modern Physics, 2011, 83(2): 407–470.
[79] Castro Neto A H, Guinea F, Peres N M R Et Al. The Electronic Properties Of Graphene[J]. Reviews Of Modern Physics, 2009, 81(1): 109–162.
[80] Li C Z, Wang L X, Liu H Et Al. Giant Negative Magnetoresistance Induced By The Chiral Anomaly In Individual Cd3as2 Nanowires[J]. Nature Communications, 2015, 6: 101137.
[81] Wang L-X, Wang S, Li J-G Et Al. Magnetotransport Properties Near The Dirac Point Of Dirac Semimetal Cd3as2 Nanowires[J]. Journal Of Physics: Condensed Matter, 2017, 29(4): 044003.
[82] Wang Q, Li C Z, Ge S Et Al. Ultrafast Broadband Photodetectors Based On Three-Dimensional Dirac Semimetal Cd3as2 [J]. Nano Letters, 2017, 17(2): 834–841.
[83] Wang A-Q, Xiang P-Z, Ye X-G Et Al. Room-Temperature Manipulation Of Spin Texture In A Dirac Semimetal[J]. Physical Review Applied, 2020, 14(5): 054044.
[84] Wang L X, Li C Z, Yu D P Et Al. Aharonov-Bohm Oscillations In Dirac Semimetal Cd3as2nanowires[J]. Nature Communications, 2016, 7(1): 10769.
[85] Wang L-X, Wang S, Li J-G Et Al. Universal Conductance Fluctuations In Dirac Semimetal Cd3as2 Nanowires[J]. Physical Review B, 2016, 94(16): 161402.
[86] Lin B-C, Wang S, Wang L-X Et Al. Gate-Tuned Aharonov-Bohm Interference Of Surface States In A Quasiballistic Dirac Semimetal Nanowire[J]. Physical Review B, 2017, 95(23): 235436.
[87] Wang S, Lin B C, Zheng W Z Et Al. Fano Interference Between Bulk And Surface States Of A Dirac Semimetal Cd3as2 Nanowire[J]. Physical Review Letters, 2018, 120(25): 257701.
[88] Lin B C, Wang S, Wiedmann S Et Al. Observation Of An Odd-Integer Quantum Hall Effect From Topological Surface States In Cd3as2 [J]. Physical Review Letters, 2019, 122(3): 36602.
[89] Li C-Z, Wang A-Q, Li C Et Al. Fermi-Arc Supercurrent Oscillations In Dirac Semimetal Josephson Junctions[J]. Nature Communications, 2020, 11(1): 1150.
[90] Lin B C, Wang S, Wang A Q Et Al. Electric Control Of Fermi Arc Spin Transport In Individual Topological Semimetal Nanowires[J]. Physical Review Letters, 2020, 124(11): 116802.
[91] Yu W, Pan W, Medlin D L Et Al. Π And 4π Josephson Effects Mediated By A Dirac Semimetal[J]. Physical Review Letters, 2018, 120(17): 177704.
[92] Huang C, Zhou B T, Zhang H Et Al. Proximity-Induced Surface Superconductivity In Dirac Semimetal Cd3as2 [J]. Nature Communications, 2019, 10(1): 2217.
[93] Li C Z, Wang A Q, Li C Et Al. Topological Transition Of Superconductivity In Dirac Semimetal Nanowire Josephson Junctions[J]. Physical Review Letters, 2021, 126(2): 27001.
[94] Călugăru D, Juričić V, Roy B. Higher-Order Topological Phases: A General Principle Of Construction[J]. Physical Review B, 2019, 99(4): 041301.
[95] Tyner A C, Sur S, Zhou Q Et Al. Quantized Non-Abelian, Berry’S Flux And Higher-Order Topology Of Na3bi[J]. 2021, Arxiv: 2102.06207.
[96] Wieder B J, Wang Z, Cano J Et Al. Strong And Fragile Topological Dirac Semimetals With Higher-Order Fermi Arcs[J]. Nature Communications, 2020, 11(1): 627.
[97] Li C-Z, Wang A-Q, Li C Et Al. Reducing Electronic Transport Dimension To Topological Hinge States By Increasing Geometry Size Of Dirac Semimetal Josephson Junctions[J]. Physical Review Letters, 2020, 124(15): 156601.
[98] Cano J, Bradlyn B, Wang Z Et Al. Chiral Anomaly Factory: Creating Weyl Fermions With A Magnetic Field[J]. Physical Review B, 2017, 95(16): 161306.
[99] Gorbar E V., Miransky V A, Shovkovy I A Et Al. Surface Fermi Arcs In Z2 Weyl Semimetals A3bina[J]. Physical Review B, 2015, 91(23): 235138.
[100] Kargarian M, Randeria M, Lu Y M. Are The Surface Fermi Arcs In Dirac Semimetals Topologically Protected?[J]. Proceedings Of The National Academy Of Sciences Of The United States Of America, 2016, 113(31): 8648–8652.
[101] Gorbar E V., Miransky V A, Shovkovy I A Et Al Dirac Semimetals A3bi (A = Na,K,Rb) As Z2 Weyl Semimetals[J]. Physical Review B, 2015., 91(12): 121101.
[102] Lu H-Z, Zhang S-B, Shen S-Q. High-Field Magnetoconductivity Of Topological Semimetals With Short-Range Potential[J]. Physical Review B, 2015, 92(4): 045203.
[103] Wang Z, Vergniory M G, Kushwaha S, Et Al. Time-Reversal-Breaking Weyl Fermions In Magnetic Heusler Alloys[J]. Physical Review Letters, 2016, 117(23): 236401.
[104] Kübler J, Felser C. Weyl Points In The Ferromagnetic Heusler Compound Co2mnal[J]. Europhysics Letters, 2016, 114(4): 47005.
[105] Liu E, Sun Y, Kumar N, Et Al. Giant Anomalous Hall Effect In A Ferromagnetic Kagome-Lattice Semimetal[J]. Nature Physics, 2018, 14: 1125-1131.
[106] Wang L L, Na H J, Kuthanazhi B, Et Al. Single Pair Of Weyl Fermions In The Half-Metallic Semimetal Eucd2as2[J]. Physical Review B, 2019, 99(24): 245147.
[107] Adler S. L. Axial-Vector Vertex In Spinor Electrodynamics[J]. 1969, 177(5): 2426-2438.
[108] Bell J S, Jackiw R. A Pcac Puzzle: Π0→Γγ In The Σ Model. Ii Nuovo Cimento A, 1969, 60(1): 47-61.
[109] Nielsen H B, Ninomiya M. Absence Of Neutruios On A Lattice. Nucl. Phys. B, 1981 185(20): 20-40.
[110] Zhang S-B, Lu H-Z, Shen S-Q. Linear Magnetoconductivity In An Intrinsic Topological Weyl Semimetal[J]. New Journal Of Physics, 2016, 18(5): 053039.
[111] Lv B Q, Weng H M, Fu B B, Et Al. Experimental Discovery Of Weyl Semimetal Taas[J]. Physical Review X, 2015, 5(3): 031013..
[112] Lee C-C, Xu S-Y, Huang S-M, Et Al. Fermi Surface Interconnectivity And Topology In Weyl Fermion Semimetals Taas, Tap, Nbas, And Nbp[J]. Physical Review B, 2015, 92(23): 235104.
[113] Lv B Q, Xu N, Weng H M, Et Al. Observation Of Weyl Nodes In Taas[J]. Nature Physics, 2015, 11(9): 724–727.
[114] Yang L X, Liu Z K, Sun Y, Et Al. Weyl Semimetal Phase In The Non-Centrosymmetric Compound Taas[J]. Nature Physics, 2015, 11(9): 728-732.
[115] Xu S-Y, Alidoust N, Belopolski I, Et Al. Discovery Of A Weyl Fermion State With Fermi Arcs In Niobium Arsenide[J]. Nature Physics, 2015, 11(9): 748-754.
[116] Huang X, Zhao L, Long Y, Et Al. Observation Of The Chiral-Anomaly-Induced Negative Magnetoresistance In 3d Weyl Semimetal Taas[J]. Physical Review X, 2015, 5(3): 031023.
[117] Zhang C, Xu S-Y, Et Al. Observation Of The Adler-Bell-Jackiw Chiral Anomaly In A Weyl Semimetal[J]. 2015, Arxiv:1503.02630.
[118] Soluyanov A A, Gresch D, Wang Z Et Al. Type-Ii Weyl Semimetals[J]. Nature, 2015, 527(7579): 495–498.
[119] Li P, Wen Y, He X Et Al. Evidence For Topological Type-Ii Weyl Semimetal Wte2[J]. Nature Communications, 2017, 8(1): 2150.
[120] Fang C, Gilbert M J, Dai X Et Al. Multi-Weyl Topological Semimetals Stabilized By Point Group Symmetry[J]. Physical Review Letters, 2012, 108(26): 266802.
[121] Huang S-M, Xu S-Y, Belopolski I Et Al. New Type Of Weyl Semimetal With Quadratic Double Weyl Fermions[J]. Proceedings Of The National Academy Of Sciences, 2016, 113(5): 1180–1185.
[122] Yang B-J, Nagaosa N. Classification Of Stable Three-Dimensional Dirac Semimetals With Nontrivial Topology[J]. Nature Communications, 2014, 5(1): 4898.
[123] Nandy S, Zeng C, Tewari S, 2021. Chiral Anomaly Induced Nonlinear Hall Effect In Semimetals With Multiple Weyl Points[J]. Physical Review B, 104(20): 205124.
[124] Chang T-R, Chen P-J, Bian G Et Al. Topological Dirac Surface States And Superconducting Pairing Correlations Inpbtase2[J]. Physical Review B, 2016, 93(24): 245130.
[125] Kopnin N B, Heikkilä T T, Volovik G E. High-Temperature Surface Superconductivity In Topological Flat-Band Systems[J]. Physical Review B, 2011, 83(22): 220503.
[126] Pang G M, Smidman M, Zhao L X Et Al. Nodeless Superconductivity In Noncentrosymmetric Pbtase2 Single Crystals[J]. Physical Review B, 2016, 93(6): 060506.
[127] Magda G Z, Jin X, Hagymási I Et Al, Room-Temperature Magnetic Order On Zigzag Edges Of Narrow Graphene Nanoribbons. Nature (London), 2014, 514, 608-611.
[128] Rhim J-W, Kim Y B. Landau Level Quantization And Almost Flat Modes In Three-Dimensional Semimetals With Nodal Ring Spectra[J]. Physical Review B, 2015, 92(4): 045126.
[129] Yan Z, Huang P-W, Wang Z. Collective Modes In Nodal Line Semimetals[J]. Physical Review B, 2016, 93(8): 085138.
[130] Biderang M, Leonhardt A, Raghuvanshi N Et Al, 2018. Drumhead Surface States And Their Signatures In Quasiparticle Scattering Interference[J]. Physical Review B, 98(7): 075115.
[131] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, And Y. Kawazoe, Phys.Rev.B 92, 045108 (2015).
[132] Chiu C-K, Schnyder A P. Classification Of Reflection-Symmetry-Protected Topological Semimetals And Nodal Superconductors[J]. Physical Review B, 2014, 90(20): 205136.
[133] Yang S A, Pan H, Zhang F. Dirac And Weyl Superconductors In Three Dimensions[J]. Physical Review Letters, 2014, 113(4): 046401.
[134] Phillips M, Aji V. Tunable Line Node Semimetals[J]. Physical Review B, 2014, 90(11): 115111.
[135] Huh Y, Moon E-G, Kim Y B. Long-Range Coulomb Interaction In Nodal-Ring Semimetals[J]. Physical Review B, 2016, 93(3), 035138.
[136] Matusiak M, Cooper J, Kaczorowski D. Thermoelectric Quantum Oscillations In Zrsis[J]. Nature Communications, 2017, 8: 15219.
[137] Emmanouilidou E, Shen B, Deng X, Et Al. Magnetotransport Properties Of The Single-Crystalline Nodal-Line Semimetal Candidates Catx (T=Ag, Cd; X=As,Ge) [J]. Physical Review B, 2017, 95(24): 245113 (2017).
[138] Mukherjee S P, Carbotte J P. Transport And Optics At The Node In A Nodal Loop Semimetal[J]. Physical Review B, 2017, 95(21): 214203.
[139] Rui W B, Zhao Y X, Schnyder A P. Topological Transport In Dirac Nodal-Line Semimetals[J]. Physical Review B, 2018, 97(16): 161113.
[140] Chen W, Luo K, Li L Et Al. Proposal For Detecting Nodal-Line Semimetal Surface States With Resonant Spin-Flipped Reflection[J]. Physical Review Letters, 2018, 121(16): 166802.
[141] Xu G, Weng H, Wang Z Et Al. Chern Semimetal And The Quantized Anomalous Hall Effect In Hgcr2se4. Physical Review Letters,1011, 107(18): 186806.
[142] Mangin P, Kahn R. Superconductivity: An Introduction[M]. Switzerland: Springer International Publishing, 2016:1-100.
[143] Huang C, Narayan A, Zhang E Et Al. Edge Superconductivity In Multilayer Wte2josephson Junction[J]. National Science Review, 2020, 7(9): 1468–1475.
[144] Murani A, Kasumov A, Sengupta S Et Al. Ballistic Edge States In Bismuth Nanowires Revealed By Squid Interferometry[J]. Nature Communications, 2017, 8(1): 15941.
[145] Bocquillon E, Deacon R S, Wiedenmann J Et Al. Gapless Andreev Bound States In The Quantum Spin Hall Insulator Hgte[J]. Nature Nanotechnology, 2017, 12(2): 137–143.
[146] Pribiag V S, Beukman A J A, Qu F Et Al. Edge-Mode Superconductivity In A Two-Dimensional Topological Insulator[J]. Nature Nanotechnology, 2015, 10(7): 593–597.
[147] Hart S, Ren H, Wagner T Et Al. Induced Superconductivity In The Quantum Spin Hall Edge[J]. Nature Physics, 2014, 10(9): 638–643.
[148] Becerra V F, Trif M, Hyart T. Topological Charge, Spin, And Heat Transistor[J]. Physical Review B, 2021, 103(20): 205410.
[149] Fleckenstein C, Ziani N T, Calzona A Et Al. Formation And Detection Of Majorana Modes In Quantum Spin Hall Trenches[J]. Physical Review B, 2021, 103(12): 125303.
[150] Dynes R C, Fulton T A. Supercurrent Density Distribution In Josephson Junctions. Physical Review B, 1971, 3(3): 3015–3023.
[151] Wang W, Kim S, Liu M Et Al. Evidence For An Edge Supercurrent In The Weyl Superconductor Mote 2[J]. Science, 2020, 368(6490): 534–537.
[152] Huang C, Narayan A, Zhang E Et Al. Edge Superconductivity In Multilayer Wte2josephson Junction[J]. National Science Review, 2020, 7(9): 1468–1475.
[153] Choi Y Bin, Xie Y, Chen C Z Et Al. Evidence Of Higher-Order Topology In Multilayer Wte2 From Josephson Coupling Through Anisotropic Hinge States[J]. Nature Materials, 2020, 19(9): 974–979.
[154] Wang Y, Lee G-H, Ali M N. Topology And Superconductivity On The Edge[J]. Nature Physics, 2021, 17(5): 542–546.
[155] Alicea J. New Directions In The Pursuit Of Majorana Fermions In Solid State Systems[J]. Reports On Progress In Physics, 2012, 75(7): 076501.
[156] Stanescu T D, Tewari S. Majorana Fermions In Semiconductor Nanowires: Fundamentals, Modeling, And Experiment[J]. Journal Of Physics: Condensed Matter, 2013, 25(23): 233201.
[157] Sato M, Ando Y. Topological Superconductors: A Review[J]. Reports On Progress In Physics, 2017, 80(7): 076501.
[158] Elliott S R, Franz M. Colloquium : Majorana Fermions In Nuclear, Particle, And Solid-State Physics[J]. Reviews Of Modern Physics, 2015, 87(1): 137–163.
[159] Alicea J, Oreg Y, Refael G Et Al, 2011. Non-Abelian Statistics And Topological Quantum Information Processing In 1d Wire Networks[J]. Nature Physics, 7(5): 412–417.
[160] Kitaev A Y. Unpaired Majorana Fermions In Quantum Wires[J]. Physics-Uspekhi, 2001, 44(10s): 131–136.
[161] Lutchyn R M, Sau J D, Das Sarma S. Majorana Fermions And A Topological Phase Transition In Semiconductor-Superconductor Heterostructures[J]. Physical Review Letters, 2010, 105(7): 077001.
[162] Deng M T, Vaitiekėnas S, Hansen E B Et Al. Majorana Bound State In A Coupled Quantum-Dot Hybrid-Nanowire System[J]. Science, 2016, 354(6319): 1557–1562.
[163] Zhang H, Gül Ö, Conesa-Boj S Et Al. Ballistic Superconductivity In Semiconductor Nanowires[J]. Nature Communications, 2017, 8(1): 16025.
[164] Grivnin A, Bor E, Heiblum M Et Al. Concomitant Opening Of A Bulk-Gap With An Emerging Possible Majorana Zero Mode[J]. Nature Communications, 2019, 10(1): 1940.
[165] De Moor M W A, Bommer J D S, Xu D Et Al. Electric Field Tunable Superconductor-Semiconductor Coupling In Majorana Nanowires[J]. New Journal Of Physics, 2018, 20(10): 103049.
[166] Zhang H, Liu D E, Wimmer M Et Al. Next Steps Of Quantum Transport In Majorana Nanowire Devices[J]. Nature Communications 2019, 10(1): 5128.
[167] Prada E, San-Jose P, De Moor M W A Et Al. From Andreev To Majorana Bound States In Hybrid Superconductor–Semiconductor Nanowires[J]. Nature Reviews Physics, 2020, 2(10): 575–594.
[168] Pan H, Liu C-X, Wimmer M Et Al. Quantized And Unquantized Zero-Bias Tunneling Conductance Peaks In Majorana Nanowires: Conductance Below And Above 2e2/H[J]. Physical Review B, 2021, 103(21): 214502.
[169] Das Sarma S, Pan H. Disorder-Induced Zero-Bias Peaks In Majorana Nanowires[J]. Physical Review B, 2021, 103(19): 195158.
[170] Pan H, Das Sarma S. Disorder Effects On Majorana Zero Modes: Kitaev Chain Versus Semiconductor Nanowire[J]. Physical Review B, 2021, 103(22): 224505.
[171] Pan H, Das Sarma S. Physical Mechanisms For Zero-Bias Conductance Peaks In Majorana Nanowires[J]. Physical Review Research, 2020, 2(1): 013377.
[172] Marra P, Nitta M. Topologically Nontrivial Andreev Bound States[J]. Physical Review B, 2019, 100(22): 220502.
[173] Hyok-Jon K, Sengupta K, Yakovenko V M. Theoretical Prediction Of The Fractional Ac Josephson Effect In P- And D-Wave Superconductors[J]. Brazilian Journal Of Physics, 2003, 33(4): 653–658.
[174] Kwon H-J, Sengupta K, Yakovenko V M. Fractional Ac Josephson Effect In P- And D-Wave Superconductors[J]. The European Physical Journal B - Condensed Matter, 2003, 37(3): 349–361.
[175] Wiedenmann J, Bocquillon E, Deacon R S Et Al. 4π-Periodic Josephson Supercurrent In Hgte-Based Topological Josephson Junctions[J]. Nature Communications, 2016, 7(1): 10303.
[176] Svetogorov A E, Loss D, Klinovaja J. Quasiparticle Poisoning In Trivial And Topological Josephson Junctions[J]. Arxiv, 2021, 2112.05650.
[177] Chiu C-K, Das Sarma S,. Fractional Josephson Effect With And Without Majorana Zero Modes[J]. Physical Review B 2019, 99(3): 035312.
[178] Baireuther P, Tworzydło J, Breitkreiz M Et Al. Weyl-Majorana Solenoid[J]. New Journal Of Physics, 2017, 19(2): 025006..
[179] Meng T, Balents L. Weyl Superconductors[J]. Physical Review B, 2012, 86(5): 054504.
[180] Bednik G, Zyuzin A A, Burkov A A. Superconductivity In Weyl Metals[J]. Physical Review B, 2015, 92(3): 035153.
[181] Sau J D, Tewari S. Topologically Protected Surface Majorana Arcs And Bulk Weyl Fermions In Ferromagnetic Superconductors[J]. Physical Review B, 2012, 86(10): 104509.
[182] Huang C, Zhou B T, Zhang Het Al, 2019. Proximity-Induced Surface Superconductivity In Dirac Semimetal Cd3as2[J]. Nature Communications, 10(1): 2217.
[183] Chen W, Liu L, Yang Wet Al,. Evidence Of Topological Nodal Lines And Surface States In The Centrosymmetric Superconductor Sntas2[J]. Physical Review B 2021, 103(3): 035133.
[184] Gao Y, Zhang J-F, Yang S A Et Al. Topological Properties Of Non-Centrosymmetric Superconductors Tir2b2 (T=Nb, Ta)[J]. Physical Review B, 2021, 103(12): 125154.
[185] Li Y, Wu Y, Xu Cet Al. Anisotropic Gapping Of Topological Weyl Rings In The Charge-Density-Wave Superconductor Intase2[J]. Science Bulletin, 2021, 66(3): 243–249.
[186] Ideue T, Koshikawa S, Namiki Het Al. Giant Nonreciprocal Magnetotransport In Bulk Trigonal Superconductor Pbtase2[J]. Physical Review Research, 2020, 2(4): 042046.
[187] Zhang S S, Yin J-X, Dai G Et Al. Field-Free Platform For Majorana-Like Zero Mode In Superconductors With A Topological Surface State[J]. Physical Review B, 2020, 101(10): 100507.
[188] Li Y, Wu Z, Zhou J Et Al. Enhanced Anisotropic Superconductivity In The Topological Nodal-Line Semimetal Inxtas2 [J]. Physical Review B, 2020, 102(22): 224503.
[189] Li Y, Wu Z, Zhou J Et Al. Enhanced Anisotropic Superconductivity In The Topological Nodal-Line Semimetal Inxtas2[J]. Physical Review B, 2020, 102(22): 224503.
[190] Dahlhaus J P, Gibertini M, Beenakker C W J. Scattering Theory Of Topological Invariants In Nodal Superconductors[J]. Physical Review B, 2012, 86(17): 174520.
[191] Nandkishore R. Weyl And Dirac Loop Superconductors[J]. Physical Review B, 2016, 93(2): 020506.
[192] Wang Y, Nandkishore R M. Topological Surface Superconductivity In Doped Weyl Loop Materials[J]. Physical Review B, 2017, 95(6): 1–5.
[193] Lee S-P, Michaeli K, Alicea J Et Al. Revealing Topological Superconductivity In Extended Quantum Spin Hall Josephson Junctions[J]. Physical Review Letters, 2014, 113(19): 197001.
[194] Dolcini F, Houzet M, Meyer J S. Topological Josephson Φ0 Junctions[J]. Physical Review B, 2015, 92(3): 035428.
[195] Tkachov G, Burset P, Trauzettel B Et Al. Quantum Interference Of Edge Supercurrents In A Two-Dimensional Topological Insulator[J]. Physical Review B, 2015, 92(4): 045408.
[196] Tkachov G, Burset P, Trauzettel B Et Al. Quantum Interference Of Edge Supercurrents In A Two-Dimensional Topological Insulator[J]. Physical Review B, 2015, 92(4): 045408.
[197] Bours L, Sothmann B, Carrega M Et Al. Topological Squipt Based On Helical Edge States In Proximity To Superconductors[J]. Physical Review Applied, 2018, 10(1): 014027.
[198] Bours L, Sothmann B, Carrega M Et Al. Phase-Tunable Thermal Rectification In The Topological Squipt[J]. Physical Review Applied, 2019, 11(4): 044073.
[199] Blasi G, Taddei F, Arrachea L Et Al. Nonlocal Thermoelectricity In A Superconductor–Topological-Insulator–Superconductor Junction In Contact With A Normal-Metal Probe: Evidence For Helical Edge States[J]. Physical Review Letters, 2020, 124(22): 227701.
[200] Chen C-Z, He J J, Ali M N Et Al. Asymmetric Josephson Effect In Inversion Symmetry Breaking Topological Materials[J]. Physical Review B, 2018, 98(7): 075430.
[201] Oostinga J B, Maier L, Schüffelgen P Et Al. Josephson Supercurrent Through The Topological Surface States Of Strained Bulk Hgte[J]. Physical Review X, 2013, 3(2): 021007.
[202] Cho S, Dellabetta B, Yang A Et Al. Symmetry Protected Josephson Supercurrents In Three-Dimensional Topological Insulators[J]. Nature Communications, 2013, 4(1): 1689.
[203] Galletti L, Charpentier S, Iavarone M Et Al. Influence Of Topological Edge States On The Properties Of Al/Bi2se3/Al Hybrid Josephson Devices[J]. Physical Review B, 2014, 89(13): 134512.
[204] Kurter C, Finck A D K, Hor Y S Et Al. Evidence for An Anomalous Current–Phase Relation In Topological Insulator Josephson Junctions[J]. Nature Communications, 2015, 6(1): 7130.
[205] Pang Y, Wang J, Lyu Z Et Al. Spatially Resolved Gap Closing in Single Josephson Junctions Constructed On Bi2se3 Surface[J]. Chinese Physics B, 2016, 25(11): 117402.
[206] Assouline A, Feuillet-Palma C, Bergeal N Et Al. Spin-Orbit Induced Phase-Shift In Bi2se3 Josephson Junctions[J]. Nature Communications, 2019, 10(1): 126.
[207] Kunakova G, Surendran A P, Montemurro D Et Al. Topological Insulator Nanoribbon Josephson Junctions: Evidence for Size Effects In Transport Properties[J]. Journal of Applied Physics, 2020, 128(19): 194304.
[208] De Ronde B, Li C, Huang Y Et Al. Induced Topological Superconductivity in A Bisbtese2-Based Josephson Junction[J]. Nanomaterials, 2020, 10(4): 794.
[209] Stolyarov V S, Yakovlev D S, Kozlov S N Et Al. Josephson Current Mediated By Ballistic Topological States In Bi2te2.3se0.7 Single Nanocrystals[J]. Communications Materials, 2020, 1(1): 38.
[210] Wu W-X, Feng Y, Bai Y-H Et Al. Gate Tunable Supercurrent In Josephson Junctions Based On Bi2te3 Topological Insulator Thin Films[J]. Chinese Physics Letters, 2021, 38(3): 037402.
[211] Nesterov K N, Houzet M, Meyer J S. Anomalous Josephson Effect In Semiconducting Nanowires As A Signature Of The Topologically Nontrivial Phase[J]. Physical Review B, 2016, 93(17): 174502.
[212] Li H, He H, Lu H, Et Al. Negative Magnetoresistance In Dirac Semimetal Cd3as2[J]. Nature Communications, 2016, 7: 10301.
[213] Li C Z, Wang L X, Liu H, Et Al. Giant Negative Magnetoresistance Induced By The Chiral Anomaly In Individual Cd3as2 Nanowires[J]. Nature Communications, 2015, 6: 10137.
[214] Xiong J, Kushwaha S K, Liang T, Et Al. Evidence For The Chiral Anomaly In The Dirac Semimetal Na3bi[J]. Science, 2015, 350(6249): 413-416.
[215] Zhang C L, Xu S Y, Wang C M, Et Al. Magnetic-Tunnelling-Induced Weyl Node Annihilation In Tap[J]. Nature Physics, 2015, 13, 979–986
[216] Kim P, Ryoo J H, Park C H. Breakdown Of The Chiral Anomaly In Weyl Semimetals In A Strong Magnetic Field[J]. Physical Review Letters, 2017, 119(26):266401.
[217] Chan C K, Lee P A. Emergence Of Gapped Bulk And Metallic Side Walls In The Zeroth Landau Level In Dirac And Weyl Semimetals[J]. Physical Review B, 2017, 96(19): 195143.
[218] Ramshaw B J, Modic K A, Shekhter A Et Al. Quantum Limit Transport And Destruction Of The Weyl Nodes In Taas[J]. Nature Communications, 2018, 9: 2217
[219] Saykin D R, Tikhonov K S, Rodionov Y I. Landau Levels With Magnetic Tunneling In A Weyl Semimetal And Magnetoconductance Of A Ballistic P -N Junction[J]. Physical Review B, 2018, 97(4): 041202.
[220] Ramamurthy S T, Hughes T L. Quasi-Topological Electromagnetic Response Of Line-Node Semimetals[J], Physical Review B, 2017, 95(7): 075138.
[221] Duan W, Yang C, Ma Z Et Al. Accurate Magneto-Optical Determination Of Radius Of Topological Nodal-Ring Semimetals[J]. Physical Review B, 2019, 99(4): 45124.
[222] Wimmer M. Quantum Transport In Nanostructures: From Computational Concepts To Spintronics In Graphene And Magnetic Tunnel Junctions[D]. University Of Regensburg, 2009.
[223] 王怀玉. 凝聚态物理的格林函数理论[M]. 科学出版社, 2008.
[224] Datta S. Electronic Transport In Mesoscopic Systems[M]. England, Cambridge University Press, 1997.
[225] Sancho M P L, Sancho J M L, Rubio J. A Nonorthogonal-Basis Calculation Of The Spectral Density Of Surface States For The (100) And (110) Faces Of Tungsten[J]. Journal Of Physics C: Solid State Physics, 1985, 18(9): 1803–1815
[226] Fisher D S, Lee P A. Relation Between Condu Tivity And Transmission Matrix. Physical Review B, 1981 23(6): 6851.
[227] Anantram M P, Lundstrom M S, Nikonov D E. Modeling Of Nanoscale Devices[J]. Proceedings Of The Ieee, 2008, 96(9): 1511–1550.
[228] Sancho M P L, Sancho J M L, Rubio J. A Nonorthogonal-Basis Calculation Of The Spectral Density Of Surface States For The (100) And (110) Faces Of Tungsten[J]. Journal Of Physics C: Solid State Physics, 1985, 18(9): 1803–1815.
[229] Sancho M P L, Sancho J M Lopez, Sancho J M L Et Al. Highly Convergent Schemes For The Calculation Of Bulk And Surface Green Functions[J]. Journal Of Physics F: Metal Physics, 1985, 15(4): 851–858.
[230] Sancho M P L, Sancho J M L, Rubio J. Quick Iterative Scheme For The Calculation Of Transfer Matrices: Application To Mo (100)[J]. Journal Of Physics F: Metal Physics, 1984, 14(5): 1205–1215.
[231] Chen M N, Su W, Deng M X Et Al. Photoinduced Topological Phase Transition And Spin Polarization In A Two-Dimensional Topological Insulator[J]. Physical Review B, 2016, 94(20): 205429.
[232] Dabiri S S, Cheraghchi H, Sadeghi A. Light-Induced Topological Phases In Thin Films Of Magnetically Doped Topological Insulators[J]. Physical Review B, 2021, 103(20): 205130.
[233] Kitagawa T, Oka T, Brataas A Et Al. Transport Properties Of Nonequilibrium Systems Under The Application Of Light: Photoinduced Quantum Hall Insulators Without Landau Levels[J]. Physical Review B, 2011, 84(23): 235108.
[234] Eckardt A. Colloquium: Atomic Quantum Gases In Periodically Driven Optical Lattices[J]. Reviews Of Modern Physics, 2017, 89(1): 011004.
[235] Oka T, Kitamura S. Floquet Engineering Of Quantum Materials[J]. Annual Review Of Condensed Matter Physics, 2019, 10(1): 387-408
[236] Yan Z, Wang Z. Tunable Weyl Points In Periodically Driven Nodal Line Semimetals[J]. Physical Review Letters, 2016, 117(8): 087402.
[237] Wang R, Wang B, Shen R Et Al. Floquet Weyl Semimetal Induced By Off-Resonant Light[J]. Europhysics Letters, 2014, 105(1): 17004.
[238] Yesilyurt C, Siu Z Bin, Tan S G Et Al. Conductance Modulation In Weyl Semimetals With Tilted Energy Dispersion Without A Band Gap[J]. Journal Of Applied Physics, 2017, 121(24): 244303.
[239] Yesilyurt C, Siu Z Bin, Tan S G Et Al, 2017. Anomalous Tunneling Characteristic Of Weyl Semimetals With Tilted Energy Dispersion[J]. Applied Physics Letters, 111(6): 063101.
[240] Yesilyurt C, Siu Z Bin, Tan S G Et Al. Electrically Tunable Valley Polarization In Weyl Semimetals With Tilted Energy Dispersion[J]. Scientific Reports, 2019, 9(1): 4480.
[241] Asano Y, Tanaka Y, Sigrist M Et Al. Josephson Current In S -Wave-Superconductor/ Sr2ruo4 Junctions[J]. Physical Review B, 2003, 67(18): 184505.
[242] Liu J-F, Chan K S. Anomalous Josephson Current Through A Ferromagnetic Trilayer Junction[J]. Physical Review B, 2010, 82(18): 184533.
[243] Liu J-F, Chan K S. Relation Between Symmetry Breaking And The Anomalous Josephson Effect[J]. Physical Review B, 2010, 82(12): 125305.
[244] Xu Y, Uddin S, Wang J Et Al. Electrically Modulated Squid With A Single Josephson Junction Coupled By A Time Reversal Breaking Weyl Semimetal Thin Film[J]. Physical Review B, 2018, 97(3): 035427.
[245] Song J, Liu H, Liu J Et Al. Quantum Interference In Topological Insulator Josephson Junctions[J]. Physical Review B, 2016, 93(19): 195302.
[246] Chen Y, Wang Y, Claassen M Et Al, 2020. Observing Photo-Induced Chiral Edge States Of Graphene Nanoribbons In Pump-Probe Spectroscopies[J]. Npj Quantum Materials, 5(1): 84.
[247] Mciver J W, Schulte B, Stein F-U Et Al. Light-Induced Anomalous Hall Effect In Graphene[J]. Nature Physics, 2020, 16(1): 38–41.
[248] Chen A, Pikulin D I, Franz M. Josephson Current Signatures Of Majorana Flat Bands On The Surface Of Time-Reversal-Invariant Weyl And Dirac Semimetals[J]. Physical Review B, 2017, 95(17): 174505.
[249] Fu P-H, Duan H-J, Wang R-Q Et Al. Phase Transitions In Three-Dimensional Dirac Semimetal Induced By Off-Resonant Circularly Polarized Light[J]. Physics Letters A, 2017, 381(40): 3499–3504.
[250] Khanna U, Kundu A, Pradhan S Et Al. Proximity-Induced Superconductivity In Weyl Semimetals[J]. Physical Review B, 2014, 90(19): 195430.
[251] Chiu C-K, Teo J C Y, Schnyder A P Et Al. Classification Of Topological Quantum Matter With Symmetries[J]. Reviews Of Modern Physics, 2016, 88(3): 035005.
[252] He J J, Wu J, Choy T-P Et Al. Correlated Spin Currents Generated By Resonant-Crossed Andreev Reflections In Topological Superconductors[J]. Nature Communications, 2014, 5(1): 3232.
[253] Tewari S, Sau J D. Topological Invariants For Spin-Orbit Coupled Superconductor Nanowires[J]. Physical Review Letters, 2012, 109(15): 150408.
[254] Wong C L M, Law K T. Majorana Kramers Doublets In Dx2−Y2 Wave Superconductors With Rashba Spin-Orbit Coupling[J]. Physical Review B, 2012, 86(18): 184516.
[255] Burkov A A, Hook M D, Balents L. Topological Nodal Semimetals[J]. Physical Review B, 2011, 84(23): 235126.
[256] Chan Y-H, Chiu C-K, Chou M Y Et Al. Ca3p2 And Other Topological Semimetals With Line Nodes And Drumhead Surface States[J]. Physical Review B, 2016, 93(20): 205132.
[257] Law K T, Lee P A, Ng T K. Majorana Fermion Induced Resonant Andreev Reflection[J]. Physical Review Letters, 2009, 103(23): 237001.
[258] Nilsson J, Akhmerov A R, Beenakker C W J. Splitting Of A Cooper Pair By A Pair Of Majorana Bound States[J]. Physical Review Letters, 2008, 101(12): 120403.
[259] Yamakage A, Sato M. Interference Of Majorana Fermions In Ns Junctions[J]. Physica E: Low-Dimensional Systems And Nanostructures, 2014, 55: 13–19.
[260] Tripathi K M, Das S, Rao S. Fingerprints Of Majorana Bound States In Aharonov-Bohm Geometry[J]. Physical Review Letters, 2016, 116(16): 166401.
[261] Hecht E, Optics. Boston, Pearson Higher Education, 2010.
[262] Das Sarma S, Sau J D, Stanescu T D. Splitting Of The Zero-Bias Conductance Peak As Smoking Gun Evidence For The Existence Of The Majorana Mode In A Superconductor-Semiconductor Nanowire[J]. Physical Review B, 2012, 86(22): 220506.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355875
专题理学院_物理系
推荐引用方式
GB/T 7714
傅培浩. 拓扑材料的超导相关输运性质研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849471-傅培浩-物理系.pdf(7749KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[傅培浩]的文章
百度学术
百度学术中相似的文章
[傅培浩]的文章
必应学术
必应学术中相似的文章
[傅培浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。