中文版 | English
题名

Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network

作者
通讯作者Chang,Haibin; Zhang,Dongxiao
发表日期
2022-10-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号466
摘要
The theory-guided convolutional neural network (TgCNN) framework, which can incorporate discretized governing equation residuals into the training of convolutional neural networks (CNNs), is extended to two-phase porous media flow problems in this work. The two principal variables of the considered problem, pressure and saturation, are approximated simultaneously with two CNNs, respectively. Pressure and saturation are coupled with each other in the governing equations, and thus the two networks are also mutually conditioned in the training process by the discretized governing equations, which also increases the difficulty of model training. The coupled and discretized equations can provide valuable information in the training process. With the assistance of theory-guidance, the TgCNN surrogates can achieve better accuracy than ordinary CNN surrogates in two-phase flow problems. Moreover, a piecewise training strategy is proposed for the scenario with varying well controls, in which the TgCNN surrogates are constructed for different segments on the time dimension and stacked together to predict solutions for the whole time-span. For scenarios with larger variance of the formation property field, the TgCNN surrogates can also achieve satisfactory performance. The constructed TgCNN surrogates are further used for inversion of permeability fields by combining them with the iterative ensemble smoother (IES) algorithm, and sufficient inversion accuracy is obtained with improved efficiency.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
通讯
资助项目
Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000885956800002
出版者
EI入藏号
20222812351914
EI主题词
Convolution ; Convolutional neural networks ; Inverse problems ; Iterative methods ; Porous materials
EI分类号
Fluid Flow, General:631.1 ; Information Theory and Signal Processing:716.1 ; Numerical Methods:921.6 ; Materials Science:951
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85133738819
来源库
Scopus
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355886
专题理学院_深圳国家应用数学中心
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.School of Energy and Mining Engineering,China University of Mining and Technology (Beijing),Beijing,100083,China
3.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
4.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,Guangdong,518000,China
通讯作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Wang,Nanzhe,Chang,Haibin,Zhang,Dongxiao. Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,466.
APA
Wang,Nanzhe,Chang,Haibin,&Zhang,Dongxiao.(2022).Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network.JOURNAL OF COMPUTATIONAL PHYSICS,466.
MLA
Wang,Nanzhe,et al."Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network".JOURNAL OF COMPUTATIONAL PHYSICS 466(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。