中文版 | English
题名

准静态震电面波和粘弹VTI介质地震面波的频散与衰减研究

其他题名
STUDY ON DISPERSION AND ATTENUATION OF QUASI-STATIC SEISMOELECTRIC SURFACE WAVES AND SEISMIC SURFACE WAVES IN VISCOELASTIC VTI MEDIA
姓名
姓名拼音
YUAN Shichuan
学号
11849511
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2022-05-15
论文提交日期
2022-07-22
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  面波(本文指瑞雷波和勒夫波)方法主要利用面波相速度频散特性来探测固体地球介质的横波速度结构,现已在浅地表地球物理勘探以及区域或全球地震学等领域得到了广泛应用。面波方法主要包括三个流程:野外数据采集,面波频散提取,面波频散反演。面波频散反演的质量主要取决于所提取的频散信息,高阶模式频散信息对于降低反演的非唯一性和提高反演的精度具有重要作用。频率-贝塞尔变换方法已被证实具有更强的面波高阶模式提取能力。固体地球介质已被广泛证实具有各向异性和粘弹性。为了获得更加符合实际情况的横波速度结构,面波方法应该考虑介质的性质。本文基于正演模拟,围绕面波频散提取以及面波在各向异性粘弹性介质中的频散与衰减特性开展研究工作,主要获得了以下4个方面的研究成果:

  高阶模式频散信息的有效提取一直是面波方法的研究热点。本文提出了从准静态震电信号(即准静态条件下震电转换的电磁信号)中提取瑞雷波高阶模式的新方法。本文采用广义反透射系数方法,模拟了重物下落源激发的、在孔隙介质中传播的地震和电磁信号,并用扩展的频率-贝塞尔变换方法提取了频散信息。对准静态震电信号频散特性的研究表明,在地下界面由瑞雷波诱发、经历振幅衰减后在地表被接收的隐失震电波也能够反映瑞雷波的频散特性,能够提供地震波场中缺失的部分高阶模式频散信息;综合利用地震和震电数据,可以提取到包含更多高阶模式和具有更宽频带的面波频散信息。进一步地,本文讨论了一些影响因素以探究隐失震电波的可探测性,也提出了地震与震电面波频散联合分析的潜在应用。本项关于震电面波频散特性的研究成果有望为利用面波频散进行固体地球介质横波速度结构成像提供更多信息,对于面波方法和震电方法都具有重要的理论意义和实用价值。

  分布式声波传感(Distributed Acoustic Sensing, DAS)技术是近年来迅猛发展的一种基于光纤的新型地震观测技术,具有低成本、多尺度、可重复和超密集地震观测等优点。不同于常规观测技术(采集地震位移场或速度场),DAS技术观测地震应变场或应变率场的响应。目前,如何从DAS地震数据中准确提取面波频散信息在理论上还没有清晰的认识。本文从单力点源角度出发,提出了多源多分量地震位移场、速度场、应变场和应变率场对应的频率-贝塞尔变换方法。数值模拟研究表明,综合利用多源多分量地震数据可以提取到更加丰富的面波频散信息;速度场和应变率场中的面波频散信息既有相似性也有差异;速度场比应变率场呈现了更宽频带的高阶模式频散信息。本项关于面波频散提取的研究成果为从常规观测技术和新型DAS观测技术采集的地震数据中提取高质量的面波频散信息提供了理论基础。

  为了研究介质各向异性和粘弹性对地震面波的影响,本文发展了相应的地震面波正演模拟方法。从广义各向异性粘弹性本构关系出发,本文推导了三维粘弹性垂向横向各向同性(Vertical Transversely IsotropicVTI)介质一阶速度-应力波动方程。将结合了标准交错网格有限差分算法、应力镜像法自由表面边界条件、多轴完美匹配层吸收边界条件等的数值模拟方案用于求解该波动方程,本文发展了粘弹性VTI介质地震面波三维有限差分波场数值模拟方法。从粘弹性VTI介质动力学方程出发,利用广义反透射系数方法推导了地震面波的久期函数族。进一步采用局部优化的方法来反演面波复波数,本文发展了粘弹性VTI介质地震面波频散曲线正演模拟方法。本项关于面波正演模拟的研究成果为进行粘弹性VTI介质中的正反演研究和应用提供了基础,对于丰富和完善面波正演理论具有较强的借鉴意义。

  基于发展的地震面波正演模拟方法和频散信息提取方法,本文研究了速度场和应变率场中的面波在粘弹性VTI介质中的频散与衰减特性。研究表明,介质的速度各向异性会使瑞雷波频散信息在频率方向的分布范围发生变化,而使勒夫波频散信息在相速度方向的分布范围发生变化。介质的粘弹性使得地震波的振幅显著衰减,高频分量比低频分量衰减更加剧烈;面波相速度表现出额外的频散特征,即介质粘弹性引起的频散;面波存在多模式衰减系数频散曲线;面波频散谱呈现出低分辨率的特征。介质的衰减各向异性改变了介质粘弹性对面波的影响程度。本文也推导了地震面波相速度和衰减系数对粘弹性介质参数的敏感函数,并进行了敏感性分析。分析发现,面波相速度和衰减系数对横波速度和横波品质因子更加敏感。本项关于地震面波频散与衰减特性的研究成果有助于更好地认识地震面波在实际地球介质中的传播特征,对于各向异性或/和粘弹性介质理论框架下面波方法的建立和发展具有重要的推动作用。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] RAYLEIGH L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 17: 4-11.
[2] LOVE A E H. Some problems of geodynamics[M]. Cambridge: Cambridge University Press, 1911.
[3] AKI K, RICHARDS P G. Quantitative seismology: Theory and methods (Vol. 1)[M]. San Francisco: W. H. Freeman, 1980.
[4] 宋先海, 李瑞有, 顾汉明, 等. 瑞雷波勘探理论及其应用[M]. 北京: 中国水利水电出版社, 2010.
[5] 夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015.
[6] DAL MORO G. Surface wave analysis for near surface applications[M]. Amsterdam: Elsevier, 2015.
[7] FOTI S, LAI C G, RIX G J, et al. Surface wave methods for near-surface site characterization[M]. London: CRC Press, 2015.
[8] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J]. Geophysical Journal International, 2003, 153(3): 719-734.
[9] IKEDA T, TSUJI T, NAKATSUKASA M, et al. Imaging and monitoring of the shallow subsurface using spatially windowed surface-wave analysis with a single permanent seismic source[J]. Geophysics, 2018, 83(6): N23-N38.
[10] LI J, LIN F, ALLAM A, et al. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 2019, 217(1): 346-360.
[11] DAL MORO G, AL-ARIFI N, MOUSTAFA S R. On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105742.
[12] HU S, ZHAO Y, SOCCO L V, et al. Retrieving 2D laterally varying structures from multi-station surface wave dispersion curves using multiscale window analysis[J]. Geophysical Journal International, 2021, 227: 1418-1438.
[13] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[14] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise rayleigh wave tomography across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[15] LIN F, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[16] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the United States[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342.
[17] WU G X, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213.
[18] PARK C B, MILLER R D, XIA J H. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808.
[19] XIA J H, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691-700.
[20] XIA J, XU Y, LUO Y, et al. Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity[J]. Surveys in Geophysics, 2012, 33(5): 841-860.
[21] PAN Y, XIA J, XU Y, et al. Multichannel analysis of Love waves in a 3D seismic acquisition system[J]. Geophysics, 2016, 81(5): N67-N74.
[22] SOCCO L V, FOTI S, BOIERO D. Surface-wave analysis for building near-surface velocity models–established approaches and new perspectives[J]. Geophysics, 2010, 75(5): A83-A102.
[23] FOTI S, HOLLENDER F, GAROFALO F, et al. Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project[J]. Bulletin of Earthquake Engineering, 2018, 16(6): 2367-2420.
[24] TIAN G, STEEPLES D W, XIA J H, et al. Multichannel analysis of surface wave method with the autojuggie[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 243-247.
[25] XU Y, XIA J, MILLER R D. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. Journal of Applied Geophysics, 2006, 59(2): 117-125.
[26] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J]. Pure and Applied Geophysics, 2008, 165(5): 903-922.
[27] WANG J, WU G, CHEN X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[28] SONG X, TANG L, ZHAO S, et al. Grey Wolf Optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 147-157.
[29] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2): 1276-1303.
[30] HANEY M M, TSAI V C. Perturbational and nonperturbational inversion of Love-wave velocities[J]. Geophysics, 2020, 85(1): F19-F26.
[31] VANTASSEL J P, COX B R. A procedure for developing uncertainty-consistent Vs profiles from inversion of surface wave dispersion data[J]. Soil Dynamics and Earthquake Engineering, 2021, 145(106622): 1-14.
[32] DAL MORO G, MARQUES MOURA R M, MOUSTAFA S S R. Multi-component joint analysis of surface waves[J]. Journal of Applied Geophysics, 2015, 119: 128-138.
[33] ZHANG Z, ALAJAMI M, ALKHALIFAH T. Wave-equation dispersion spectrum inversion for near-surface characterization using fibre-optics acquisition[J]. Geophysical Journal International, 2020, 222(2): 907-918.
[34] SONG Z H, ZENG X F, THURBER C H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing[J]. Geophysics, 2021, 86(1): N1-N12.
[35] XIA J H, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[36] BEATY K S, SCHMITT D R, SACCHI M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2): 622-631.
[37] SONG X, GU H, LIU J, et al. Estimation of shallow subsurface shear-wave velocity by inverting fundamental and higher-mode Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7): 599-607.
[38] MARASCHINI M, ERNST F, FOTI S, et al. A new misfit function for multimodal inversion of surface waves[J]. Geophysics, 2010, 75(4): G31-G43.
[39] IKEDA T, MATSUOKA T, TSUJI T, et al. Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method[J]. Geophysical Journal International, 2012, 190(1): 541-552.
[40] TOMAR G, STUTZMANN E, MORDRET A, et al. Joint inversion of the first overtone and fundamental mode for deep imaging at the Valhall oil field using ambient noise[J]. Geophysical Journal International, 2018, 214(1): 122-132.
[41] YOSHIZAWA K, EKSTROEM G. Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America[J]. Geophysical Journal International, 2010, 183(3): 1538-1558.
[42] XU H, BEGHEIN C. Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach[J]. Geophysical Journal International, 2019, 218(1): 333-353.
[43] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019, 62(1): 298-305.
[44] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[45] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python Package for seismic ambient noise cross-correlation and the frequency-Bessel transform method[J]. Seismological Research Letters, 2021, XX: 1-8.
[46] THOMPSON A H, GIST G A. Geophysical applications of electrokinetic conversion[J]. The Leading Edge, 1993, 12(12): 1169-1173.
[47] PRIDE S R. Governing equations for the coupled electromagnetics and acoustics of porous media[J]. Physical Review B, 1994, 50(21): 15678-15696.
[48] ZHU Z Y, HAARTSEN M W, TOKSOZ M N. Experimental studies of seismoelectric conversions in fluid-saturated porous media[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28055-28064.
[49] REVIL A, JARDANI A, SAVA P, et al. The seismoelectric method: Theory and applications[M]. Oxford: Wiley Blackwell, 2015.
[50] GROBBE N, REVIL A, ZHU Z, et al. Seismoelectric Exploration: Theory, Experiments, and Applications[M]. Hoboken: American Geophysical Union, 2020.
[51] YU C, ZHAN Z, LINDSEY N J, et al. The potential of DAS in teleseismic studies: Insights from the Goldstone experiment[J]. Geophysical Research Letters, 2019, 46(3): 1320-1328.
[52] AJO-FRANKLIN J B, DOU S, LINDSEY N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9(1328): 1-14.
[53] ZHAN Z W. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 2020, 91(1): 1-15.
[54] ZHU T, SHEN J, MARTIN E R. Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA[J]. Solid Earth, 2021, 12(1): 219-235.
[55] 王宝善, 曾祥方, 宋政宏, 等. 利用城市通信光缆进行地震观测和地下结构探测[J]. 科学通报, 2021, 66(20): 2590-2595.
[56] LAI C G, RIX G J, FOTI S, et al. Simultaneous measurement and inversion of surface wave dispersion and attenuation curves[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9): 923-930.
[57] XIE H, LIU L. Near-surface anisotropic structure characterization by Love wave inversion for assessing ground conditions in urban areas[J]. Journal of Earth Science, 2015, 26(6): 807-812.
[58] LI J, DUTTA G, SCHUSTER G. Wave-equation Q(s) inversion of skeletonized surface waves[J]. Geophysical Journal International, 2017, 209(2): 979-991.
[59] GAO L, PAN Y, TIAN G, et al. Estimating Q Factor from Multi-mode Shallow-Seismic Surface Waves[J]. Pure and Applied Geophysics, 2018, 175(8): 2609-2622.
[60] ARMSTRONG M A, RAVASIO M, VERSTEIJLEN W G, et al. Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment[J]. Geophysical Journal International, 2020, 221(2): 1439-1449.
[61] KRISTEK J, MOCZO P. Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite-difference modeling[J]. Bulletin of the Seismological Society of America, 2003, 93(5): 2273-2280.
[62] BORCHERDT R D. Viscoelastic waves in layered media[M]. New York: Cambridge University Press, 2009.
[63] CARCIONE J M. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media, third edition[M]. Amsterdam: Elsevier, 2015.
[64] THOMSEN L, ANDERSON D L. Weak elastic anisotropy in global seismology[J]. Geological Society of America Special Papers, 2015, 514: 39-50.
[65] CRAMPIN S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4): 343-391.
[66] CHANG C H, GARDNER G H F, MCDONALD J A. Experimental observation of surface wave propagation for a transversely isotropic medium[J]. Geophysics, 1995, 60(1): 185-190.
[67] THOMSEN L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
[68] 吴国忱. 各向异性介质地震波传播与成像[M]. 东营: 中国石油大学出版社, 2006.
[69] ZHOU Y. Surface-wave sensitivity to 3-D anelasticity[J]. Geophysical Journal International, 2009, 178(3): 1403-1410.
[70] LIU H P, ANDERSON D L, KANAMORI H. Velocity dispersion due to anelasticity: implications for seismology and mantle composition[J]. Geophysical Journal International, 1976, 47(1): 41-58.
[71] CARCIONE J M, KOSLOFF D, KOSLOFF R. Wave propagation simulation in a linear viscoelastic medium[J]. Geophysical Journal International, 1988, 95(3): 597-611.
[72] DAY S M, MINSTER J B. Numerical simulation of wave fields using a Padé approximant method[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 78(1): 105-118.
[73] EMMERICH H, KORN M. Incorporation of attenuation into time-domain computations of seismic wave fields[J]. Geophysics, 1987, 52(9): 1252-1264.
[74] KJARTANSSON E. Constant-Q wave propagation and attenuation[J]. Journal of Geophysical Research: Solid Earth, 1979, 84: 4737-4748.
[75] CARCIONE J M. Rayleigh waves in isotropic viscoelastic media[J]. Geophysical Journal International, 1992, 108(2): 453-464.
[76] TANUMA K, MAN C S, CHEN Y. Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J]. Journal of Seismology, 2015, 92: 63-82.
[77] SUN Y-C, ZHANG W, CHEN X. Seismic-wave modeling in the presence of surface topography in 2D general anisotropic media by a curvilinear grid finite-difference method[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1287-1301.
[78] MCDONAL F J, ANGONA F A, MILLS L R, et al. Attenuation of shear and compressional waves in Pierre shale[J]. Geophysics, 1958, 23: 421-439.
[79] MOCZO P, BARD P Y. Wave diffraction, amplification and differential motion near strong lateral discontinuities[J]. Bulletin of the Seismological Society of America, 1993, 83(1): 85-106.
[80] KRISTEK J, MOCZO P, CHALJUB E, et al. A discrete representation of a heterogeneous viscoelastic medium for the finite-difference modelling of seismic wave propagation[J]. Geophysical Journal International, 2019, 217(3): 2021-2034.
[81] ROBERTSSON J O A, BLANCH J O, SYMES W W. Viscoelastic finite-difference modeling[J]. Geophysics, 1994, 59(9): 1444-1456.
[82] ZHU T, CARCIONE J M, HARRIS J M. Approximating constant-Q seismic propagation in the time domain[J]. Geophysical Prospecting, 2013, 61(5): 931-940.
[83] BLANC E, KOMATITSCH D, CHALJUB E, et al. Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation[J]. Geophysical Journal International, 2016, 205(1): 427-439.
[84] MOCZO P, KRISTEK J. On the rheological models used for time-domain methods of seismic wave propagation[J]. Geophysical Research Letters, 2005, 32(1): L01306.
[85] CARCIONE J M, CAVALLINI F, MAINARDI F, et al. Time-domain modeling of constant-Q seismic waves using fractional derivatives[J]. Pure and Applied Geophysics, 2002, 159(7): 1719-1736.
[86] CARCIONE J M. Constitutive model and wave equations for linear, viscoelastic, anisotropic media[J]. Geophysics, 1995, 60(2): 537-548.
[87] ZHU Y P, TSVANKIN I. Plane-wave propagation in attenuative transversely isotropic media[J]. Geophysics, 2006, 71(2): T17-T30.
[88] ZHU T. Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation[J]. Geophysics, 2017, 82(4): A1-A10.
[89] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806-822.
[90] BAI T, TSVANKIN I. Time-domain finite-difference modeling for attenuative anisotropic media[J]. Geophysics, 2016, 81(2): C69-C77.
[91] ZHU T, BAI T. Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian[J]. Geophysics, 2019, 84(3): T121-T131.
[92] QIAO Z, SUN C, WU D. Theory and modelling of constant-Q viscoelastic anisotropic media using fractional derivative[J]. Geophysical Journal International, 2019, 217(2): 798-815.
[93] CARCIONE J M. Modeling anelastic singular surface waves in the Earth[J]. Geophysics, 1992, 57(6): 781-792.
[94] ZHANG K, LUO Y, XIA J, et al. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1332-1337.
[95] 高静怀, 何洋洋, 马逸尘. 黏弹性与弹性介质中Rayleigh面波特性对比研究[J]. 地球物理学报, 2012, 55(1): 207-218.
[96] YUAN S, SONG X, ZHANG X, et al. Finite-difference modeling and characteristics analysis of Rayleigh waves in anisotropic-viscoelastic media[J]. Soil Dynamics and Earthquake Engineering, 2018a, 108: 46-57.
[97] YUAN S, SONG X, CAI W, et al. Analysis of attenuation and dispersion of Rayleigh waves in viscoelastic media by finite-difference modeling[J]. Journal of Applied Geophysics, 2018b, 148: 115-126.
[98] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[99] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Geophysics, 1950, 21(1): 89-93.
[100] KNOPOFF L. A matrix method for elastic wave problem[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431-438.
[101] DUNKIN J W. Computation of modal solutions in layered, elastic media at high frequencies[J]. Bulletin of the Seismological Society of America, 1965, 55(2): 335-358.
[102] WATSON T H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 161-166.
[103] BUCHEN P, BEN-HADOR R. Free-mode surface-wave computations[J]. Geophysical Journal International, 1996, 124(3): 869-887.
[104] ABO-ZENA A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1): 91-105.
[105] KENNETT B. Reflections, rays, and reverberations[J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1685-1696.
[106] CHEN X. A systematic and efficient method for computing seismic normal modes in layered half-space[J]. Geophysical Journal International, 1993, 115(2): 391-409.
[107] 凡友华, 刘家琦, 肖柏勋. 计算瑞雷波频散曲线的快速矢量算法[J]. 湖南大学学报, 2002, 29(5): 25-30.
[108] ANDERSON D L. Elastic wave propagation in layered anisotropic media[J]. Journal of Geophysical Research: Solid Earth, 1961, 66(9): 2953-2963.
[109] 牛滨华, 何继善, 孙春岩. 半空间多层各向异性介质的面波频散方程[J]. 中南工业大学学报, 1995, 26(2): 162-166.
[110] PARK J. Surface waves in layered anisotropic structures[J]. Geophysical Journal International, 1996, 126(1): 173-183.
[111] ZHANG S X, WANG Y, ZHOU H, et al. Dispersion splitting of Rayleigh waves in layered azimuthally anisotropic media[J]. Journal of Applied Geophysics, 2009, 67(2): 130-142.
[112] KE G, DONG H, KRISTENSEN A, et al. Modified Thomson-Haskell matrix methods for surface-wave dispersion-curve calculation and their accelerated root-searching schemes[J]. Bulletin of the Seismological Society of America, 2011, 101(4): 1692-1703.
[113] IKEDA T, MATSUOKA T. Computation of Rayleigh waves on transversely isotropic media by the reduced delta matrix method[J]. Bulletin of the Seismological Society of America, 2013, 103(3): 2083-2093.
[114] JI G, ZHANG P, WU R, et al. Calculation method and characteristic analysis of dispersion curves of Rayleigh channel waves in transversely isotropic media[J]. Geophysics, 2020, 85(6): C187-C198.
[115] LAI C G, RIX G J. Solution of the Rayleigh eigenproblem in viscoelastic media[J]. Bulletin of the Seismological Society of America, 2002, 92(6): 2297-2309.
[116] CAO Z, DONG H. Attenuation dispersion of Love waves in a viscoelastic multilayered half-space[C]. Denver, Colorado: SEG 80th Annual Meeting, 2010.
[117] 张凯, 张保卫, 刘建勋, 等. 层状黏弹性介质中Rayleigh波频散曲线“交叉”现象分析[J]. 地球物理学报, 2016, 59(3): 972-980.
[118] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wavefield transformation[J]. Geophysics, 1981, 46: 869-874.
[119] YILMAZ O. Seismic data processing[M]. Tulsa, Oklahoma: Society of Exploration Geophysicists, 1987.
[120] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channel record[C]. In SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1998.
[121] XIA J, XU Y, MILLER R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5): 941-956.
[122] POGGI V, FÄH D, GIARDINI D. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform[J]. Pure and Applied Geophysics, 2013, 170(3): 319-335.
[123] MUN S, BAO Y, LI H. Generation of Rayleigh-wave dispersion images from multichannel seismic data using sparse signal reconstruction[J]. Geophysical Journal International, 2015, 203(2): 818-827.
[124] ZHENG Y, HU H. Nonlinear signal comparison and high‐resolution measurement of surface‐wave dispersion[J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1551-1556.
[125] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255.
[126] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报, 2019, 62(9): 3400-3407.
[127] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196: 104372.
[128] HU S, LUO S, YAO H. The frequency‐Bessel spectrograms of multi‐component cross‐correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2020JB019630.
[129] GAO L, ZHANG W, ZHANG Z, et al. Extraction of multimodal dispersion curves from ambient noise with compressed sensing[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB021472.
[130] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency Bessel method[J]. Bulletin of the Seismological Society of America, 2021, 112: 143-152.
[131] XI C, XIA J, MI B, et al. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225: 1271-1280.
[132] DONG S, LI Z, CHEN X, et al. DisperNet: An effective method of extracting and classifying the dispersion curves in the frequency–Bessel dispersion spectrum[J]. Bulletin of the Seismological Society of America, 2021, XX, 1-12.
[133] WANG Z, SUN C, WU D. Automatic picking of multi-mode surface-wave dispersion curves based on machine learning clustering methods[J]. Computers & Geosciences, 2021, 153: 104809.
[134] SONG W, FENG X, WU G, et al. Convolutional neural network, ResUnet++, -based dispersion curve picking from noise cross-correlations[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021J-e22027J.
[135] DAI T, XIA J, NING L, et al. Deep learning for extracting dispersion curves[J]. Surveys in Geophysics, 2021, 42(1): 69-95.
[136] LIOR I, SLADEN A, RIVET D, et al. On the detection capabilities of underwater distributed acoustic sensing[J]. Journal of GeophysicalResearch: Solid Earth, 2021, 126(3): e2020J-e20925J.
[137] LI Y, KARRENBACH M, AJO-FRANKLIN J B. Distributed acoustic sensing in geophysics: methods and applications[M]. American Geophysical Union and John Wiley & Sons, Inc, 2021.
[138] 宋政宏, 曾祥方, 徐善辉, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅰ: 主动源高频面波[J]. 地球物理学报, 2020, 63(02): 532-540.
[139] 林融冰, 曾祥方, 宋政宏, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅱ: 背景噪声成像[J]. 地球物理学报, 2020, 63(04): 1622-1629.
[140] CHENG F, CHI B, LINDSEY N J, et al. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific Reports, 2021, 11(1): 5613.
[141] 雷宇航, 尹扶, 洪鹤庭, 等. 基于MF-J变换的DAS观测高阶面波提取和浅地表结构成像[J]. 地球物理学报, 2021, 64(12): 4280-4291.
[142] IVANOV A G. Effect of electrization of earth layers by elastic wayes passing through them[J]. Comptes Rendus De L Academie Des Sciences De L Urss, 1939, 24: 42-45.
[143] BUTLER K E, RUSSELL R D, KEPIC A W, et al. Measurement of the seismoelectric response from a shallow boundary[J]. Geophysics, 1996, 61(6): 1769-1778.
[144] MIKHAILOV O V, HAARTSEN M W, TOKSOEZ M N. Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling[J]. Geophysics, 1997, 62(1): 97-105.
[145] GARAMBOIS S, DIETRICH M. Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[J]. Geophysics, 2001, 66(5): 1417-1430.
[146] KULESSA B, MURRAY T, RIPPIN D. Active seismoelectric exploration of glaciers[J]. Geophysical Research Letters, 2006, 33(7): L7503.
[147] DUPUIS J C, BUTLER K E, KEPIC A W. Seismoelectric imaging of the vadose zone of a sand aquifer[J]. Geophysics, 2007, 72(6): A81-A85.
[148] HAINES S S, PRIDE S R, KLEMPERER S L, et al. Seismoelectric imaging of shallow targets[J]. Geophysics, 2007, 72(2): G9-G20.
[149] LIU Z, YUAN L, ZHANG X, et al. A laboratory seismoelectric measurement for the permafrost model with a frozen-unfrozen interface[J]. Geophysical Research Letters, 2008, 35(21): L21404.
[150] STRAHSER M, JOUNIAUX L, SAILHAC P, et al. Dependence of seismoelectric amplitudes on water content[J]. Geophysical Journal International, 2011, 187(3): 1378-1392.
[151] BORDES C, SENECHAL P, BARRIERE J, et al. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon[J]. Geophysical Journal International, 2015, 200(3): 1317-1335.
[152] 严洪瑞, 刘洪, 李幼铭, 等. 震电勘探方法在大庆油田的实验研究[J]. 地球物理学报, 1999, 42: 257-267.
[153] 石昆法. 震电效应原理和初步实验结果[J]. 地球物理学报, 2001, 44(5): 720-728.
[154] 胡恒山, 李长文, 王克协, 等. 声电效应测井模型实验研究[J]. 测井技术, 2001, 25(2): 89-95.
[155] 陈本池, 牟永光, 狄帮让, 等. 井中震电勘探模型实验研究[J]. 石油物探, 2003, 42(1): 35-38.
[156] 张元中, 肖立志, 楚泽涵, 等. 模型井声电效应的实验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2434-2438.
[157] REVIL A, JARDANI A. Seismoelectric response of heavy oil reservoirs: theory and numerical modelling[J]. Geophysical Journal International, 2010, 180(2): 781-797.
[158] REN H, WEN J, HUANG Q, et al. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals[J]. Geophysical Journal International, 2015, 200(2): 835-848.
[159] SLOB E, MULDER M. Seismoelectromagnetic homogeneous space Green's functions[J]. Geophysics, 2016, 81(4): F27-F40.
[160] REN H, HUANG Q, CHEN X. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion[J]. Pure and Applied Geophysics, 2018, 175(8): 2853-2879.
[161] DUAN Y, HU H, GUAN W. A study on the influence of salinity interfaces on borehole seismoelectric wavefields[J]. Geophysics, 2020, 85(6): D167-D180.
[162] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28: 168-178.
[163] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28: 179-191.
[164] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33: 1482-1498.
[165] PRIDE S R, HAARTSEN M W. Electroseismic wave properties[J]. Journal of the Acoustical Society of America, 1996, 100(3): 1301-1315.
[166] WARDEN S, GARAMBOIS S, JOUNIAUX L, et al. Seismoelectric wave propagation numerical modelling in partially saturated materials[J]. Geophysical Journal International, 2013, 194(3): 1498-1513.
[167] HAARTSEN M W, PRIDE S R. Electroseismic waves from point sources in layered media[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B11): 24745-24769.
[168] HAN Q, WANG Z Z. Time-domain simulation of SH-wave–induced electromagnetic field in heterogeneous porous media: A fast finite-element algorithm[J]. Geophysics, 2001, 66(2): 448-461.
[169] GARAMBOIS S, DIETRICH M. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B7): E51-E518.
[170] KENNETT B L N, KERRY N J. Seismic waves in a stratified half space[J]. Geophysical Journal of the Royal Astronomical Society, 1979, 57(3): 557-583.
[171] HAINES S S, PRIDE S R. Seismoelectric numerical modeling on a grid[J]. Geophysics, 2006, 71(6): N57-N65.
[172] GUAN W, HU H. Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation[J]. Journal of Computational Physics, 2008, 227(11): 5633-5648.
[173] REN H, HUANG Q, CHEN X. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media[J]. Earthquake Science, 2010, 23(2): 167-176.
[174] LUCO J E, APSEL R J. On the Green's function for a layered half-space: part I[J]. Bulletin of the Seismological Society of America, 1983, 73(4): 909-929.
[175] CHEN X. Seismogram synthesis in multi-layered half-space Part I. Theoretical formulations[J]. Earthquake Research in China, 1999, 13(2): 149-174.
[176] GAO Y, HU H. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium[J]. Geophysical Journal International, 2010, 181: 873-896.
[177] HU H, GAO Y. Electromagnetic field generated by a finite fault due to electrokinetic effect[J]. Journal of Geophysical Research: Solid Earth, 2011, 116: B08302.
[178] REN H, CHEN X, HUANG Q. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media[J]. Geophysical Journal International, 2012, 188(3): 925-944.
[179] GUAN W, HU H, ZHENG X. Theoretical simulation of the multipole seismoelectric logging while drilling[J]. Geophysical Journal International, 2013, 195(2): 1239-1250.
[180] GROBBE N, SLOB E C. Seismo-electromagnetic thin-bed responses: Natural signal enhancements?[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2460-2479.
[181] GAO Y, WANG M, HU H, et al. Seismoelectric responses to an explosive source in a fluid above a fluid-saturated porous medium[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7190-7218.
[182] ZHENG X-Z, REN H, BUTLER K E, et al. Seismoelectric and electroseismic modeling in stratified porous media with a shallow or ground surface source[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021J-e21950J.
[183] ZHANG H M, CHEN X F, CHANG S H. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths[J]. Pure and Applied Geophysics, 2003, 160: 467-486.
[184] ZHAO G, BI Y, WANG L, et al. Advances in alternating electromagnetic field data processing for earthquake monitoring in China[J]. Science China Earth Sciences, 2015, 58(2): 172-182.
[185] REN H, HUANG Q, CHEN X. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium[J]. Geophysical Journal International, 2016a, 206(1): 205-220.
[186] JIANG L, XU Y, ZHU L, et al. Rotation-induced magnetic field in a coil magnetometer generated by seismic waves[J]. Geophysical Journal International, 2018, 212(2): 743-759.
[187] SUN Y-C, UYESHIMA M, REN H, et al. Numerical simulations to explain the coseismic electromagnetic signals: a case study for a M5.4 aftershock of the 2016 Kumamoto earthquake[J]. Earth Planets and Space, 2019, 71(1): 143.
[188] DZIERAN L, THORWART M, RABBEL W, et al. Quantifying interface responses with seismoelectric spectral ratios[J]. Geophysical Journal International, 2019, 217(1): 108-121.
[189] DUPUIS J C, BUTLER K E, KEPIC A W, et al. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer[J]. Journal of Geophysical Research: Solid Earth, 2009,114: B10306.
[190] BUTLER K E, KULESSA B, PUGIN A J. Multimode seismoelectric phenomena generated using explosive and vibroseis sources[J]. Geophysical Journal International, 2018, 213(2): 836-850.
[191] GROBBE N, DE RIDDER S A L. Seismoelectric surface-wave analysis for characterization of formation properties, using dispersive relative spectral amplitudes[J]. Geophysics, 2021, 86(3): A27-A31.
[192] REN H, HUANG Q, CHEN X. Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid-porous interface[J]. Geophysical Journal International, 2016b, 204(1): 147-166.
[193] GAO Y, HUANG F, HU H. Comparison of full and quasi-static seismoelectric analytically based modeling[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8066-8106.
[194] GUAN W, SHI P, HU H. Contributions of poroelastic-wave potentials to seismoelectromagnetic wavefields and validity of the quasi-static calculation: a view from a borehole model[J]. Geophysical Journal International, 2018, 212: 458-475.
[195] HU H, LIU J. Simulation of the converted electric field during acoustoelectric logging[C]. In SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2002, pp. 348-351.
[196] ZHENG X, HU H, GUAN W, WANG J. Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect[J]. Geophysics, 2015, 80(5): D417-D427.
[197] BOUCHON M, AKI K. Discrete wavenumber representation of seismic source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67: 259-277.
[198] FOTI S, PAROLAI S, ALBARELLO D, et al. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 2011, 32(6): 777-825.
[199] NAKATA N. Near-surface S-wave velocities estimated from traffic-induced Love waves using seismic interferometry with double beamforming[J]. Interpretation-A Journal of Subsurface Characterization, 2016, 4(4): Q23-Q31.
[200] REVIL A, LINDE N, CEREPI A, et al. Electrokinetic coupling in unsaturated porous media[J]. Journal of Colloid and Interface Science, 2007, 313(1): 315-327.
[201] ZYSERMAN F I, MONACHESI L B, JOUNIAUX L. Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone[J]. Geophysical Journal International, 2017, 208(2): 918-935.
[202] XIONG Z, LIU Z, ZHANG K. An experimental study of Rayleigh waves based on seismoelectric measurements[M]//EDS. GROBBE N, REVIL A, ZHU Z, SLOB E. Seismoelectric Exploration: Theory, Experiments and Applications. American Geophysical Union, 2020.
[203] GAO L, XIA J, PAN Y, et al. Reason and condition for mode kissing in MASW method[J]. Pure and Applied Geophysics, 2016, 173(5): 1627-1638.
[204] DZIERAN L, THORWART M, RABBEL W. Seismoelectric monitoring of aquifers using local seismicity-a feasibility study[J]. Geophysical Journal International, 2020, 222(2): 874-892.
[205] DAI T, HU Y, NING L, et al. Effects due to aliasing on surface-wave extraction and suppression in frequency-velocity domain[J]. Journal of Applied Geophysics, 2018, 158: 71-81.
[206] BUTLER K E, DUPUIS J C, KEPIC A W. Signal to noise improvements in seismoelectric data acquisition[C]. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007.
[207] ZHANG C, LI Y, LIN H, et al. Signal preserving and seismic random noise attenuation by Hurst exponent based time-frequency peak filtering[J]. Geophysical Journal International, 2015, 203(2): 901-909.
[208] 蔡伟, 宋先海, 袁士川, 等. 新的瑞雷波多模式频散曲线反演目标函数[J]. 地球科学, 2017, 42(9): 1608-1622.
[209] 何耀锋, 陈蔚天, 陈晓非. 利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J]. 地球物理学报, 2006, 49: 1074-1081.
[210] WU B, CHEN X F. Stable, accurate and efficient computation of normal modes for horizontal stratified models[J]. Geophysical Journal International, 2016, 206(2): 1281-1300.
[211] SONG X, TANG L, LV X, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, 84: 1-13.
[212] MOCZO P, BYSTRICKY E, KRISTEK J, et al. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures[J]. Bulletin of the Seismological Society of America, 1997, 87(5): 1305-1323.
[213] O'CONNELL R J, BUDIANSKY B. Measures of dissipation in viscoelastic media[J]. Geophysical Research Letters, 1978, 5(1): 5-8.
[214] SUN Y-C, ZHANG W, CHEN X. Seismic-wave modeling in the presence of surface topography in 2D general anisotropic media by a curvilinear grid finite-difference method[J]. Bulletin of the Seismological Society of America, 2016, 106(3): 1036-1054.
[215] LOVE A E H. A treatise on the mathematical theory of elasticity[M]. Cambridge: Cambridge University Press, 1927.
[216] BOND W L. The mathematics of the physical properties of crystals[J]. Bell System Technical Journal, 1943, 22(1): 1-72.
[217] 牛滨华, 孙春岩. 半空间介质与地震波传播[M]. 北京: 石油工业出版社, 2002.
[218] TSVANKIN I. Seismic signatures and analysis of reflection data in anisotropic media[M]. Tulsa, Oklahoma: Society of Exploration Geophysicists, 2001.
[219] BLANCH J O, ROBERTSSON J O A, SYMES W W. Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique[J]. Geophysics, 1995, 60(1): 176-184.
[220] CARCIONE J M, CAVALLINI F. The generalized SH-wave equation[J]. Geophysics, 1995, 60(2): 549-555.
[221] BOHLEN T. Parallel 3-D viscoelastic finite difference seismic modelling[J]. Computers & Geosciences, 2002, 28: 887-899.
[222] 牟永光, 裴正林. 三维复杂介质地震数据模拟[M]. 北京: 石油工业出版社, 2005.
[223] VIRIEUX J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Geophysics, 1986, 51(4): 889-901.
[224] GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
[225] LEVANDER A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53(11): 1425-1436.
[226] ROBERTSSON J O A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography[J]. Geophysics, 1996, 61(6): 1921-1934.
[227] KRISTEK J, MOCZO P, ARCHULETA R J. Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes[J]. Studia Geophysica et Geodaetica, 2002, 46(2): 355-381.
[228] MEZA-FAJARDO K C, PAPAGEORGIOU A S. A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis[J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1811-1836.
[229] COLLINO F, TSOGKA C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1): 294-307.
[230] 董良国, 马在田, 曹景忠, 等. 一阶弹性波方程交错网格高阶差分解法[J]. 地球物理学报, 2000, 43(3): 411-419.
[231] TANG L, FANG X. Generation of 6-C synthetic seismograms in stratified vertically transversely isotropic media using a generalized reflection and transmission coefficient method[J]. Geophysical Journal International, 2021, 225(3): 1554-1585.
[232] SÁNCHEZ SESMA F J, CAMPILLO M. Retrieval of the Green's function from cross‐correlation: The canonical elastic problem[J]. Bulletin of the Seismological Society of America, 2006, 96: 1182-1191.
[233] YOUNG W C, BUDYNAS R G, SADEGH A M. Roark’s formulas for stress and strain, 8th edition[M]. New York: McGraw-Hill, 2012.
[234] LIM CHEN NING I, SAVA P. Multicomponent distributed acoustic sensing: concept and theory[J]. Geophysics, 2018, 83(2): P1-P8.
[235] LAI W M, RUBIN D, KREMPL E. Introduction to continuum mechanics, 4th edition[M]. New York: Elsevier, 2010.
[236] 董良国, 马在田, 曹景忠. 一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报, 2000, 43(6): 411-419.
[237] OLVER F W J, LOZIER D W, BOISVERT R F, et al. NIST handbook of mathematical functions[M]. New York: Cambridge University Press, 2010.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P631.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/355968
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
袁士川. 准静态震电面波和粘弹VTI介质地震面波的频散与衰减研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849511-袁士川-地球与空间科学(18994KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[袁士川]的文章
百度学术
百度学术中相似的文章
[袁士川]的文章
必应学术
必应学术中相似的文章
[袁士川]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。