中文版 | English
题名

An efficient utility-list based high-utility itemset mining algorithm

作者
通讯作者Fang, Wei
发表日期
2022-07-01
DOI
发表期刊
ISSN
0924-669X
EISSN
1573-7497
卷号53期号:6页码:6992-7006
摘要
High-utility itemset mining (HUIM) is an important task in data mining that can retrieve more meaningful and useful patterns for decision-making. One-phase HUIM algorithms based on the utility-list structure have been shown to be the most efficient as they can mine high-utility itemsets (HUIs) without generating candidates. However, storing itemset information for the utility-list is time-consuming and memory consuming. To address this problem, we propose an efficient simplified utility-list-based HUIM algorithm (HUIM-SU). In the proposed HUIM-SU algorithm, the simplified utility-list is proposed to obtain all HUIs effectively and reduce memory usage in the depth-first search process. Based on the the simplified utility-list, repeated pruning according to the transaction-weighted utilisation (TWU) reduces the number of items. In addition, a construction tree and compressed storage are introduced to further reduce the search space and the memory usage. The extension utility and itemset TWU are then proposed to be the upper bounds, which reduce the search space considerably. Extensive experimental results on dense and sparse datasets indicate that the proposed HUIM-SU algorithm is highly efficient in terms of the number of candidates, memory usage, and execution time.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China["2017YFC1601000","2017YFC1601800"] ; National Natural Science foundation of China["62073155","62106088","61673194","61672263"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000824373500003
出版者
EI入藏号
20222912386067
EI主题词
Decision making ; Digital storage
EI分类号
Data Storage, Equipment and Techniques:722.1 ; Data Processing and Image Processing:723.2 ; Management:912.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85134351417
来源库
Web of Science
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/356177
专题工学院_计算机科学与工程系
作者单位
1.Wuxi Inst Technol, Sch Internet Things, Gaolang Rd, Wuxi 214121, Jiangsu, Peoples R China
2.Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Lihu Ave, Wuxi 214122, Jiangsu, Peoples R China
3.Western Norway Univ Appl Sci, Dept Comp Sci Elect Engn & Math Sci, Bergen, Norway
4.Southern Univ Sci & Technol, Comp Sci & Engn Dept, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Zaihe,Fang, Wei,Shen, Wei,et al. An efficient utility-list based high-utility itemset mining algorithm[J]. APPLIED INTELLIGENCE,2022,53(6):6992-7006.
APA
Cheng, Zaihe,Fang, Wei,Shen, Wei,Lin, Jerry Chun-Wei,&Yuan, Bo.(2022).An efficient utility-list based high-utility itemset mining algorithm.APPLIED INTELLIGENCE,53(6),6992-7006.
MLA
Cheng, Zaihe,et al."An efficient utility-list based high-utility itemset mining algorithm".APPLIED INTELLIGENCE 53.6(2022):6992-7006.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Zaihe]的文章
[Fang, Wei]的文章
[Shen, Wei]的文章
百度学术
百度学术中相似的文章
[Cheng, Zaihe]的文章
[Fang, Wei]的文章
[Shen, Wei]的文章
必应学术
必应学术中相似的文章
[Cheng, Zaihe]的文章
[Fang, Wei]的文章
[Shen, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。