题名 | An efficient utility-list based high-utility itemset mining algorithm |
作者 | |
通讯作者 | Fang, Wei |
发表日期 | 2022-07-01
|
DOI | |
发表期刊 | |
ISSN | 0924-669X
|
EISSN | 1573-7497
|
卷号 | 53期号:6页码:6992-7006 |
摘要 | High-utility itemset mining (HUIM) is an important task in data mining that can retrieve more meaningful and useful patterns for decision-making. One-phase HUIM algorithms based on the utility-list structure have been shown to be the most efficient as they can mine high-utility itemsets (HUIs) without generating candidates. However, storing itemset information for the utility-list is time-consuming and memory consuming. To address this problem, we propose an efficient simplified utility-list-based HUIM algorithm (HUIM-SU). In the proposed HUIM-SU algorithm, the simplified utility-list is proposed to obtain all HUIs effectively and reduce memory usage in the depth-first search process. Based on the the simplified utility-list, repeated pruning according to the transaction-weighted utilisation (TWU) reduces the number of items. In addition, a construction tree and compressed storage are introduced to further reduce the search space and the memory usage. The extension utility and itemset TWU are then proposed to be the upper bounds, which reduce the search space considerably. Extensive experimental results on dense and sparse datasets indicate that the proposed HUIM-SU algorithm is highly efficient in terms of the number of candidates, memory usage, and execution time. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key R&D Program of China["2017YFC1601000","2017YFC1601800"]
; National Natural Science foundation of China["62073155","62106088","61673194","61672263"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000824373500003
|
出版者 | |
EI入藏号 | 20222912386067
|
EI主题词 | Decision making
; Digital storage
|
EI分类号 | Data Storage, Equipment and Techniques:722.1
; Data Processing and Image Processing:723.2
; Management:912.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85134351417
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/356177 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Wuxi Inst Technol, Sch Internet Things, Gaolang Rd, Wuxi 214121, Jiangsu, Peoples R China 2.Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Lihu Ave, Wuxi 214122, Jiangsu, Peoples R China 3.Western Norway Univ Appl Sci, Dept Comp Sci Elect Engn & Math Sci, Bergen, Norway 4.Southern Univ Sci & Technol, Comp Sci & Engn Dept, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Cheng, Zaihe,Fang, Wei,Shen, Wei,et al. An efficient utility-list based high-utility itemset mining algorithm[J]. APPLIED INTELLIGENCE,2022,53(6):6992-7006.
|
APA |
Cheng, Zaihe,Fang, Wei,Shen, Wei,Lin, Jerry Chun-Wei,&Yuan, Bo.(2022).An efficient utility-list based high-utility itemset mining algorithm.APPLIED INTELLIGENCE,53(6),6992-7006.
|
MLA |
Cheng, Zaihe,et al."An efficient utility-list based high-utility itemset mining algorithm".APPLIED INTELLIGENCE 53.6(2022):6992-7006.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论