中文版 | English
题名

Robust nonadiabatic geometric quantum computation by dynamical correction

作者
通讯作者Xue, Zheng-Yuan
发表日期
2022-07-06
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号106期号:1
摘要
Besides the intrinsic noise resilience property, nonadiabatic geometric phases are of the fast evolution nature, and thus can naturally be used in constructing quantum gates with excellent performance, i.e., the so-called nonadiabatic geometric quantum computation (NGQC). However, previous single-loop NGQC schemes are sensitive to the operational control error, i.e., the X error, due to the limitations of the implementation. Here, we propose a robust scheme for NGQC combining with the dynamical correction technique, which still uses only simplified pulses, and thus being experimental friendly. We numerically show that our scheme can greatly improve the gate robustness in previous protocols, retaining the intrinsic merit of geometric phases. Furthermore, to fight against the dephasing noise, due to the Z error, we can incorporate the decoherence-free subspace encoding strategy. In this way, our scheme can be robust against both types of errors. Finally, we also propose how to implement the scheme with encoding on superconducting quantum circuits with experimentally demonstrated technology. Therefore, due to the intrinsic robustness, our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Key-Area Research and Development Program of GuangDong Province[2018B030326001] ; National Natural Science Foundation of China[11874156] ; Guangdong Provincial Key Laboratory of Quantum Science and Engineering[2019B121203002] ; Guangdong Provincial Key Laboratory[2020B1212060066]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000824587200007
出版者
EI入藏号
20223012411942
EI主题词
Encoding (symbols) ; Geometry ; Quantum computers ; Quantum theory ; Signal encoding
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Data Processing and Image Processing:723.2 ; Mathematics:921 ; Quantum Theory; Quantum Mechanics:931.4
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/356184
专题量子科学与工程研究院
作者单位
1.South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Ma, Guangzhou 510006, Peoples R China
2.South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
3.South China Normal Univ, Guangdong Hong Kong Joint Lab Quantum Matter & Fr, Guangzhou 510006, Peoples R China
4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Liang, Ming-Jie,Xue, Zheng-Yuan. Robust nonadiabatic geometric quantum computation by dynamical correction[J]. PHYSICAL REVIEW A,2022,106(1).
APA
Liang, Ming-Jie,&Xue, Zheng-Yuan.(2022).Robust nonadiabatic geometric quantum computation by dynamical correction.PHYSICAL REVIEW A,106(1).
MLA
Liang, Ming-Jie,et al."Robust nonadiabatic geometric quantum computation by dynamical correction".PHYSICAL REVIEW A 106.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang, Ming-Jie]的文章
[Xue, Zheng-Yuan]的文章
百度学术
百度学术中相似的文章
[Liang, Ming-Jie]的文章
[Xue, Zheng-Yuan]的文章
必应学术
必应学术中相似的文章
[Liang, Ming-Jie]的文章
[Xue, Zheng-Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。