题名 | Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions |
作者 | |
通讯作者 | Zheng, Yi |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 0013-936X
|
EISSN | 1520-5851
|
卷号 | 56期号:14页码:10530-10542 |
摘要 | Terrestrial export of nitrogen is a critical Earth system process, but its global dynamics remain difficult to predict at a high spatiotemporal resolution. Here, we use deep learning (DL) to model daily riverine nitrogen export in response to hydrometeorological and anthropogenic drivers. Long short-term memory (LSTM) models for the daily concentration and flux of dissolved inorganic nitrogen (DIN) were built in a coastal watershed in southeastern China with a typical subtropical monsoon climate. The DL models exhibited excellent accuracy for both DIN concentration and flux, with Nash-Sutcliffe efficiency coefficients (NSEs) up to 0.67 and 0.92, respectively, a performance unlikely to be achieved by generic process-based models with comparable data quality. The flux model ensemble, without retraining, performed well (mean NSE = 0.32-0.84) in seven distinct watersheds in Asia, Europe, and North America, and retraining with multi-watershed data further improved the lowest NSE from 0.32 to 0.68. DL interpretation confirmed that interbasin consistency of riverine nitrogen export exists across different continents, which stems from the similarities in rainfall-runoff relationships. The multi-watershed flux model projects 0.60-12.4% increases in the nitrogen export to oceans from the studied watersheds under a 20% increase in fertilizer consumption, which rises to 6.7-20.1% with a 10% increase in runoff, indicating the synergistic effect of human activities and climate change. The DL-based method represents a successful case of explainable artificial intelligence in environmental science, providing a potential shortcut to a consistent understanding of the global daily-resolution dynamics of riverine nitrogen export under the currently limited data conditions. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China["51961125203","92047302"]
; Shenzhen Science and Technology Innovation Commission[KCXFZ202002011006491]
|
WOS研究方向 | Engineering
; Environmental Sciences & Ecology
|
WOS类目 | Engineering, Environmental
; Environmental Sciences
|
WOS记录号 | WOS:000826222100001
|
出版者 | |
EI入藏号 | 20223012418256
|
EI主题词 | Climate change
; Climate models
; Earth system models
; Learning systems
; Runoff
; Watersheds
|
EI分类号 | Flood Control:442.1
; Meteorology:443
; Atmospheric Properties:443.1
; Surface Water:444.1
; Maintenance:913.5
; Mathematics:921
|
ESI学科分类 | ENVIRONMENT/ECOLOGY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:27
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/356197 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, 518055, Peoples R China 2.Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China 3.Xiamen Univ, Coll Environm & Ecol, Fujian Prov Key Lab Coastal Ecol & Environm Studie, Xiamen, 361102, Peoples R China 4.Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, D-04318 Leipzig, Germany 5.Southern Univ Sci & Technol, Shenzhen Municipal Engn Lab Environm IoT Technol, Shenzhen 518055, Guangdong Provi, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院; 南方科技大学 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Xiong, Rui,Zheng, Yi,Chen, Nengwang,et al. Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2022,56(14):10530-10542.
|
APA |
Xiong, Rui.,Zheng, Yi.,Chen, Nengwang.,Tian, Qing.,Liu, Wei.,...&Zheng, Yan.(2022).Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions.ENVIRONMENTAL SCIENCE & TECHNOLOGY,56(14),10530-10542.
|
MLA |
Xiong, Rui,et al."Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions".ENVIRONMENTAL SCIENCE & TECHNOLOGY 56.14(2022):10530-10542.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论