中文版 | English
题名

Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions

作者
通讯作者Zheng, Yi
发表日期
2022-06-01
DOI
发表期刊
ISSN
0013-936X
EISSN
1520-5851
卷号56期号:14页码:10530-10542
摘要
Terrestrial export of nitrogen is a critical Earth system process, but its global dynamics remain difficult to predict at a high spatiotemporal resolution. Here, we use deep learning (DL) to model daily riverine nitrogen export in response to hydrometeorological and anthropogenic drivers. Long short-term memory (LSTM) models for the daily concentration and flux of dissolved inorganic nitrogen (DIN) were built in a coastal watershed in southeastern China with a typical subtropical monsoon climate. The DL models exhibited excellent accuracy for both DIN concentration and flux, with Nash-Sutcliffe efficiency coefficients (NSEs) up to 0.67 and 0.92, respectively, a performance unlikely to be achieved by generic process-based models with comparable data quality. The flux model ensemble, without retraining, performed well (mean NSE = 0.32-0.84) in seven distinct watersheds in Asia, Europe, and North America, and retraining with multi-watershed data further improved the lowest NSE from 0.32 to 0.68. DL interpretation confirmed that interbasin consistency of riverine nitrogen export exists across different continents, which stems from the similarities in rainfall-runoff relationships. The multi-watershed flux model projects 0.60-12.4% increases in the nitrogen export to oceans from the studied watersheds under a 20% increase in fertilizer consumption, which rises to 6.7-20.1% with a 10% increase in runoff, indicating the synergistic effect of human activities and climate change. The DL-based method represents a successful case of explainable artificial intelligence in environmental science, providing a potential shortcut to a consistent understanding of the global daily-resolution dynamics of riverine nitrogen export under the currently limited data conditions.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["51961125203","92047302"] ; Shenzhen Science and Technology Innovation Commission[KCXFZ202002011006491]
WOS研究方向
Engineering ; Environmental Sciences & Ecology
WOS类目
Engineering, Environmental ; Environmental Sciences
WOS记录号
WOS:000826222100001
出版者
EI入藏号
20223012418256
EI主题词
Climate change ; Climate models ; Earth system models ; Learning systems ; Runoff ; Watersheds
EI分类号
Flood Control:442.1 ; Meteorology:443 ; Atmospheric Properties:443.1 ; Surface Water:444.1 ; Maintenance:913.5 ; Mathematics:921
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:27
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/356197
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, 518055, Peoples R China
2.Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
3.Xiamen Univ, Coll Environm & Ecol, Fujian Prov Key Lab Coastal Ecol & Environm Studie, Xiamen, 361102, Peoples R China
4.Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, D-04318 Leipzig, Germany
5.Southern Univ Sci & Technol, Shenzhen Municipal Engn Lab Environm IoT Technol, Shenzhen 518055, Guangdong Provi, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Xiong, Rui,Zheng, Yi,Chen, Nengwang,et al. Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2022,56(14):10530-10542.
APA
Xiong, Rui.,Zheng, Yi.,Chen, Nengwang.,Tian, Qing.,Liu, Wei.,...&Zheng, Yan.(2022).Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions.ENVIRONMENTAL SCIENCE & TECHNOLOGY,56(14),10530-10542.
MLA
Xiong, Rui,et al."Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions".ENVIRONMENTAL SCIENCE & TECHNOLOGY 56.14(2022):10530-10542.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiong, Rui]的文章
[Zheng, Yi]的文章
[Chen, Nengwang]的文章
百度学术
百度学术中相似的文章
[Xiong, Rui]的文章
[Zheng, Yi]的文章
[Chen, Nengwang]的文章
必应学术
必应学术中相似的文章
[Xiong, Rui]的文章
[Zheng, Yi]的文章
[Chen, Nengwang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。