中文版 | English
题名

反式钙钛矿太阳能电池的空穴传输层及光伏性能研究

其他题名
RESEARCH ON HOLE-TRANSPORTING LAYER AND PHOTOVOLTAIC PERFORMANCE OF INVERTED PEROVSKITE SOLAR CELLS
姓名
姓名拼音
LIAO Qiaogan
学号
11849537
学位类型
博士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
郭旭岗
导师单位
材料科学与工程系
论文答辩日期
2022-05-18
论文提交日期
2022-07-25
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

反式钙钛矿太阳能电池(PSCs)具有可低温溶液加工、迟滞效应小和便于与单晶硅等光伏技术进行串联等多方面优势。目前基于反式结构的单节PSCs和串联器件已经获得的PCE分别超过24%29%。作为反式PSCs器件的关键组成部分,空穴传输材料(HTMs)不仅起到空穴传输和提取的作用,还在很大程度上影响沉积于其上面的钙钛矿活性层的薄膜质量以及器件长期稳定性。因此,开发高性能、稳定的HTMs以及改善HTMs的加工工艺是提高反式PSCs性能和长期稳定性的有效策略。为此,本论文从HTMs的分子设计策略及其制备工艺的角度出发,通过开发含羧基的新型给体-受体(D-A) HTMs和优化其加工工艺以提高反式PSC器件的效率和稳定性为目的,制备了高性能的反式PSC器件

通过紫外可见光谱、傅里叶红外光谱、X射线光电子能谱等多种表征发现,聚[3-(4-羧丁基)噻吩](P3CT)直接作为反式PSC器件的空穴传输材料具有多方面优势P3CT的衍生物P3CT-Na相比P3CT的分子侧链羧基不仅可以牢固地锚定在氧化铟锡(ITO)电极表面上并提升其表面功函数,而且还对钙钛矿活性层的界面缺陷具有良好的钝化效果。P3CT的上述双重功能使得沉积其表面的钙钛矿薄膜具有更好的成膜质量。基于P3CT的反式PSC器件具有更低的非辐射复合几率和空穴陷阱态密度,有利于提高开路电压(VOC) (1.12 V)。最终,基于P3CT的反式PSC器件实现了较高的PCE (21.33%)。此外,随着器件面积增加到0.80 cm2,基于P3CT的反式PSC器件的PCE仍然可高达19.65%。这为后续开发和制备高性能空穴传输界面材料提供了重要的指导。

染料敏化太阳能电池中高性能染料分子以及含羧基的P3CT的启发,采用具有锚定基团(2-氰基丙烯酸,CA)且低成本的新型D-A小分子MPA-BT-CA 作为反式钙钛矿太阳能电池的空穴传输材料。多种表征发现CA的引入使得MPA-BT-CA分子材料具有如下四个优点:首先,有效调节前沿分子轨道能级,其中最高占据分子轨道(HOMO)能级低至-5.29 eV;其次,提升ITO电极的表面功函;再次,有效钝化钙钛矿活性层的界面缺陷,提升钙钛矿的成膜质量;最后,增加材料在低毒绿色溶剂中的溶解性,便于绿色加工工艺的实施。因此,基于MPA-BA-CA的反式PSCs取得了出色的器件性能,其PCE高达21.24% 且长期稳定性优良。另外,当采用绿色溶剂乙醇作为MPA-BT-CA的加工溶剂时,相应的反式PSCs器件实现了较高的PCE,达20.52%,且迟滞效应可忽略不计。该部分的研究结果表明,这种基于锚定基团材料的新颖分子设计策略很好地结合了低成本、可绿色溶剂加工和高性能的优点,为探索适用于PSC商业化的高性能HTM奠定了基础。

具有不同锚定基团(2-氰基丙烯酸,CA;苯甲酸BA;罗丹宁-3-丙酸,RA)的新型D-A自组装分子(SAMs) (MPA-BT-CAMPA-BT-BAMPA-BT-RA)表现出显著差异理化性质以及对反式PSCs器件的光伏性能和器件稳定性产生不同的影响。其中,MPA-BT-CAMPA-BT-RA表现出更强的分子偶极矩,均超过12.6 DebyeMPA-BT-CAMPA-BT-BAITO表面通过采用直立的自组装模式形成均匀且近似单分子层的空穴传输层。然而,RA基团上sp3杂化碳原子(-CH2-)的存在,使得羧基具有高的旋转自由度MPA-BT-RA分子在固态时有很强的聚集倾向,不利于实现长程有序自组装层。因此,得益于良好的热稳定性、高偶极矩以及致密且均匀的自组装膜,基于自组装分子MPA-BT-CA反式钙钛矿器件实现优异的光伏性能,其PCE高达21.86%。此外,当器件的有效面积增加到 0.80 cm2时,基于MPA-BT-CA的反式PSC器件仍然可以获得接近20%PCE。该研究开发高性能空穴传输型SAM实现高效、柔性、大面积以及串联PSC提供了重要的理论依据和指导意义。

MPA-BT-CA的研究基础上,利用含氟的新型D-A小分子材料FMPA-BT-CA作为反式钙钛矿太阳能电池的空穴传输界面材料。FMPA-BT-CA具有低至-5.45 eVHOMO能级,与钙钛矿的价带能级更匹配,有利于提高PSC器件的VOC。另外,FMPA-BT-CA具有强偶极矩和钙钛矿缺陷钝化功能,有利于减少缺陷,提高电荷提取效率。此外,CA锚定基团增加了FMPA-BT-CA在醇类绿色溶剂(如乙醇和异丙醇)中的溶解度,有利于绿色加工工艺的实施。当采用异丙醇作为FMPA-BT-CA的加工溶剂,基于FMPA-BT-CA的绿色加工的反式PSC器件获得优异的光伏性能(PCE 22.35%)。此外,基于可绿色加工FMPA-BT-CA的反式PSC器件经历1000小时的持续光照之后仍可保持90%PCE,其光稳定性明显优于基于MPA-BT-CAPSC器件。

其他摘要

Inverted perovskite solar cells (PSCs) have several distinctive advantages, including low-temperature solution processability, neglectable hysteresis, and the easy combination with other advanced photovoltaic technologies such as those based on monocrystalline silicon. To date, single and tandem devices based on the inverted structures have obtained PCEs above 24% and 29%, respectively. As a key component of inverted PSCs, hole-transporting materials (HTMs) not only play the critical role for hole transport and extraction, but also greatly affect the film quality of perovskite active layer deposited onto the HTM surface as well as the long-term stability of devices. Therefore, developing high-performance HTMs has served as one of the most effective strategies to improve the performance and long-term stability of inverted PSCs. By combining the efforts from the molecular design of HTMs and the optimization of device fabrication process, we aimed at developing novel high-performance carboxyl-containing donor-acceptor (D-A) type HTMs and optimizing their processing condition to improve the PCE and stability of the corresponding inverted PSC devices. The main research works have been carried out as the following five aspects:

The polymer poly[3-(4-carboxybutyl)thiophene] (P3CT) was directly applied as the hole-transporting layer in inverted PSCs. At the same time, P3CT-Na, a derivative of P3CT, was used as a controlled hole-transporting layer. By carrying out a series of characterization techniques such as ultraviolet-visible spectroscopy, Fourier infrared spectroscopy, and X-ray photoelectron spectroscopy, it was found that the carboxyl (-COOH) group in the side chains of P3CT molecule can not only firmly anchor onto the indium tin oxide (ITO) electrode surface and optimize its work function, but also show effective passivation function to the defects of perovskite active layer. Benefiting from these dual-functionalities, a better perovskite film with good film quality was obtained on P3CT. Therefore, the inverted PSC devices incorporating P3CT show lower non-radiative recombination, which is beneficial to increasing the open-circuit voltage (VOC) to 1.12 V. Consequently, the inverted PSC devices based on P3CT exhibited a high PCE of 21.33%. In addition, when the device area increases to 0.80 cm2, the PCE of P3CT-based devices maintians as high as 19.65%. This work provides an important strategy for the preparation and development of high-performance HTMs for inverted PSCs.

Inspired by the application of high-performance dye molecules in dye-sensitized solar cells and the carboxyl-containing polymer P3CT, a new kind of low-cost D-A type small molecule MPA-BT-CA with an anchor group (2-cyanoacrylic acid, CA) was used as the hole-transporting material for inverted perovskite solar cells. By carrying out multiple characterizations, it was found that the introduction of CA endows MPA-BT-CA with the following advantages: firstly, its energy levels can be effectively tuned, showing a supressed highest occupied molecular orbital (HOMO) energy level of -5.29 eV; secondly, the surface work function of the ITO electrode surface  can be optimized; thirdly, MPA-BT-CA can effectively passivate surface defects of perovskite active layer; finally, the alcohol solubility of HTM is increased. As a result, the inverted PSCs based on MPA-BA-CA HTM achieved a high PCE of up to 21.24% with excellent long-term stability. In addition, when processing the MPA-BT-CA HTM film with a green solvent, i.e. ethanol, the corresponding inverted PSC devices delivered a substantial PCE up to 20.52% with a negligible hysteresis. This work clearly shows that the HTM based on the molecular design of anchoring group combines the advantages of low cost, environmentally friendly processability and high performance, which will pave a way for the exploration of highly efficient HTMs applicable to the PSC commercialization.

A series of new self-assembled donor-acceptor (D-A) type SAMs (MPA-BT-CA, MPA-BT-BA, and MPA-BT-RA) with distinct anchoring groups (2-cyanoacrylic acid, CA; benzoic acid, BA; rhodanine-3-propionic acid, RA) were developed. As hole-stransporting interface materials, their effects on on the peroformance of inverted perovskite solar cells were systematically studied. Among them, MPA-BT-CA and MPA-BT-RA show stronger molecular dipole moments. By adopting an upstanding self-assembly mode, MPA-BT-CA and MPA-BT-BA can form a uniform, almost monolayer HTM on the ITO surface. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp3 hybridization of the carbon atom (-CH2-) on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer. As a result, benefiting from its good thermal stability, high dipole moment, as well as dense and uniform self-assembled film, the devices based on MPA-BT-CA yielded a remarkable PCE of 21.86%, which is the highest value reported to date for inverted PSC devices based on self-assembled hole contacts. Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs while the device area is increased to 0.80 cm2. Our work sheds light on the design principles and processing method for developing hole selecting SAMs, which should pave a new avenue for realizing highly efficient, flexible, large-area, and/or tandem PSCs.

A new kind of fluorine-containing D-A type small molecule FMPA-BT-CA was used as the hole-transporting material for high-performance inverted perovskite solar cells. FMPA-BT-CA shows low-lying HOMO energy levels of as low as -5.45 eV, which can better match the valence band of perovskite active layer and should be beneficial to increasing the VOC of PSC devices. In addition, CA anchoring group has maintained the solubility of FMPA-BT-CA in alcoholic solvents (e.g., ethanol and isopropanol), which is beneficial to the implementation of the green alcohol solution process. When isopropanol is used as the processing solvent for FMPA-BT-CA, the inverted PSC devices based on FMPA-BT-CA obtain an excellent PCE up to 22.35%. Moreover, the FMPA-BT-CA-based inverted PSC devices present good light stability with 90% PCE retained after 1000 hour light soaking, which is better than FMPA-BT-CA-based inverted PSC devices under the  same condition.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Becquerel A E. Recherches Sur Les Effects De La Radiation Chimique De La Lumière Solaire, Au Moyen Des Courants électriques[J]. Comptes Rendus de L´Academie des Sciences, 1839, 9: 145-149.
[2] Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics, 1954, 25(5): 676-677.
[3] Green M A. Silicon Photovoltaic Modules: A Brief History of the First 50 Years[J]. Progress in Photovoltaics, 2005, 13(5): 447-455.
[4] Shah A, Torres P, Tscharner R, et al. Photovoltaic Technology: The Case for Thin-Film Solar Cells[J]. Science, 1999, 285(5428): 692-698.
[5] Yoo J J, Seo G, Chua M R, et al. Efficient Perovskite Solar Cells Via Improved Carrier Management[J]. Nature, 2021, 590(7847): 587-593.
[6] Park N-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology[J]. Materials Today, 2015, 18(2): 65-72.
[7] Wang Y, Han L. Research Activities on Perovskite Solar Cells in Chin[J]. Science China Chemistry, 2019, 62(7): 822-828.
[8] Jena A K, Kulkarni A, Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects[J]. Chemical Reviews, 2019, 119(5): 3036-3103.
[9] Gong J, Darling S B, You F. Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts[J]. Energy & Environmental Science, 2015, 8(7): 1953-1968.
[10] Liu J, Yao M, Shen L. Third Generation Photovoltaic Cells Based on Photonic Crystals[J]. Journal of Materials Chemistry C, 2019, 7(11): 3121-3145.
[11] Arjunan T V, Senthil T S. Review: Dye Sensitised Solar Cells[J]. Materials Technology, 2013, 28(1-2): 9-14.
[12] Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell- efficiency. html.
[13] Yin W, Shi T, Yan Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber[J]. Applied Physics Letters, 2014, 104(6): 063903.
[14] Yin W-J, Yang J-H, Kang J, et al. Halide Perovskite Materials for Solar Cells: A Theoretical Review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942.
[15] Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038.
[16] Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[17] Wehrenfennig C, Eperon G E, Johnston M B, et al. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.
[18] Ponseca C S, Savenije T J, Abdellah M, et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination[J]. Journal of the American Chemical Society, 2014, 136(14): 5189-5192.
[19] Li Y, Yan W, Li Y, et al. Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film[J]. Scientific Reports, 2015, 5(1): 14485.
[20] Dittrich T, Lang F, Shargaieva O, et al. Diffusion Length of Photo-Generated Charge Carriers in Layers and Powders of CH3NH3PbI3 Perovskite[J]. Applied Physics Letters, 2016, 109(7): 073901.
[21] Zhang F, Yang B, Li Y, et al. Extra Long Electron-Hole Diffusion Lengths in CH3NH3PbI3-xClx Perovskite Single Crystals[J]. Journal of Materials Chemistry C, 2017, 5(33): 8431-8435.
[22] Ryu S, Noh J H, Jeon N J, et al. Voltage Output of Efficient Perovskite Solar Cells with High Open-Circuit Voltage and Fill Factor[J]. Energy & Environmental Science, 2014, 7(8): 2614-2618.
[23] Zhou X, Zhang L, Wang X, et al. Highly Efficient and Stable Gabr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V[J]. Advanced Materials, 2020, 32(14): 1908107.
[24] Qiu L, Ono L K, Qi Y. Advances and Challenges to the Commercialization of Organic–Inorganic Halide Perovskite Solar Cell Technology[J]. Materials Today Energy, 2018, 7: 169-189.
[25] Correa-Baena J P, Saliba M, Buonassisi T, et al. Promises and Challenges of Perovskite Solar Cells[J]. Science, 2017, 358(6364): 739-744.
[26] Im J H, Kim H S, Park N G. Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step Versus Two-Step Deposition of CH3NH3PbI3[J]. APL Materials, 2014, 2(8): 081510.
[27] Li M, Yang Y-G, Wang Z-K, et al. Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability[J]. Advanced Materials, 2019, 31(25): 1901519.
[28] Wang J, Li J, Zhou Y, et al. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[29] Zheng X, Hou Y, Bao C, et al. Managing Grains and Interfaces Via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells[J]. Nature Energy, 2020, 5(2): 131-140.
[30] Deng W, Li F, Li J, et al. Anti-Solvent Free Fabrication of FA-Based Perovskite at Low Temperature Towards to High Performance Flexible Perovskite Solar Cells[J]. Nano Energy, 2020, 70: 104505.
[31] Yang C, Wang H, Miao Y, et al. Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23%[J]. ACS Energy Letters, 2021, 6(8): 2690-2696.
[32] Wang P, Chen B, Li R, et al. Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V[J]. ACS Energy Letters, 2021, 6(6): 2121-2128.
[33] Liu M, Johnston M B, Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature, 2013, 501(7467): 395-398.
[34] Chen Q, Zhou H, Hong Z, et al. Planar Heterojunction Perovskite Solar Cells Via Vapor-Assisted Solution Process[J]. Journal of the American Chemical Society, 2014, 136(2): 622-625.
[35] Burschka J, Pellet N, Moon S J, et al. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells[J]. Nature, 2013, 499(7458): 316-319.
[36] Chen B, Rudd P N, Yang S, et al. Imperfections and Their Passivation in Halide Perovskite Solar Cells[J]. Chemical Society Reviews, 2019, 48(14): 3842-3867.
[37] Abate A, Saliba M, Hollman D J, et al. Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells[J]. Nano Letter, 2014, 14(6): 3247-3254.
[38] Stranks S D. Nonradiative Losses in Metal Halide Perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525.
[39] Xue J, Wang R, Wang K-L, et al. Crystalline Liquid-Like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film[J]. Journal of the American Chemical Society, 2019, 141(35): 13948-13953.
[40] Lee J-W, Kim H-S, Park N-G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells[J]. Accounts of Chemical Research, 2016, 49(2): 311-319.
[41] Noel N K, Abate A, Stranks S D, et al. Enhanced Photoluminescence and Solar Cell Performance Via Lewis Base Passivation of Organic– Inorganic Lead Halide Perovskites[J]. ACS Nano, 2014, 8(10): 9815-9821.
[42] Zhang H, Nazeeruddin M K, Choy W C H. Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability[J]. Advanced Materials, 2019, 31(8): 1805702.
[43] Peng J, Khan J I, Liu W, et al. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(Methyl Methacrylate)[J]. Advanced Energy Materials, 2018, 8(30): 1801208.
[44] Chen W, Wang Y, Pang G, et al. Conjugated Polymer-Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells[J]. Advanced Functional Materials, 2019, 29(27): 1808855.
[45] Niu T, Lu J, Munir R, et al. Stable High-Performance Perovskite Solar Cells Via Grain Boundary Passivation[J]. Advanced Materials, 2018, 30(16): e1706576.
[46] Lin Y, Shen L, Dai J, et al. Pi-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells[J]. Advanced Materials, 2017, 29(7): 1604545.
[47] Niu T, Lu J, Tang M-C, et al. High Performance Ambient-Air-Stable FAPbI3 Perovskite Solar Cells with Molecule-Passivated Ruddlesden–Popper/3D Heterostructured Film[J]. Energy & Environmental Science, 2018, 11(12): 3358-3366.
[48] Lee M M, Teuscher J, Miyasaka T, et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012, 338(6107): 643-647.
[49] Jeong M, Choi I W, Go E M, et al. Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3 V Voltage Loss[J]. Science, 2020, 369(6511): 1615-1620.
[50] Lu H, Liu Y, Ahlawat P, et al. Vapor-Assisted Deposition of Highly Efficient, Stable Black-Phase FAPbI3 Perovskite Solar Cells[J]. Science, 2020, 370(6512): eabb8985.
[51] Kim G, Min H, Lee K S, et al. Impact of Strain Relaxation on Performance of Alpha-Formamidinium Lead Iodide Perovskite Solar Cells[J]. Science, 2020, 370(6512): 108-112.
[52] Wang P, Zhao Y, Wang T. Recent Progress and Prospects of Integrated Perovskite/Organic Solar Cells[J]. Applied Physics Reviews, 2020, 7(3): 031303.
[53] Liao J H-H. Behind the Breakthrough of the ∼30% Perovskite Solar Cell[J]. Joule, 2021, 5(2): 295-297.
[54] Yang D, Zhang X, Hou Y, et al. 28.3%-Efficiency Perovskite/Silicon Tandem Solar Cell by Optimal Transparent Electrode for High Efficient Semitransparent Top Cell[J]. Nano Energy, 2021, 84: 105934.
[55] Xiong J, Dai Z, Zhan S, et al. Multifunctional Passivation Strategy Based on Tetraoctylammonium Bromide for Efficient Inverted Perovskite Solar Cells[J]. Nano Energy, 2021, 84: 105882.
[56] Liu T, Chen K, Hu Q, et al. Inverted Perovskite Solar Cells: Progresses and Perspectives[J]. Advanced Energy Materials, 2016, 6(17): 1600457.
[57] Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.
[58] Vos A D. Detailed Balance Limit of the Efficiency of Tandem Solar Cells[J]. Journal of Physics D: Applied Physics, 1980, 13(5): 839-846.
[59] Geisz J F, FRANCE R M, SCHULTE K L, et al. Six-Junction III–V Solar Cells with 47.1% Conversion Efficiency under 143 Suns Concentration[J]. Nature Energy, 2020, 5(4): 326-335.
[60] Lin R, Xiao K, Qin Z, et al. Monolithic All-Perovskite Tandem Solar Cells with 24.8% Efficiency Exploiting Comproportionation to Suppress Sn(II) Oxidation in Precursor Ink[J]. Nature Energy, 2019, 4(10): 864-873.
[61] Liu Y, Chen Y. Integrated Perovskite/Bulk-Heterojunction Organic Solar Cells[J]. Advanced Materials, 2020, 32(3): 1805843.
[62] Han Q, Hsieh Y T, Meng L, et al. High-Performance Perovskite /Cu(In,Ga)Se2 Monolithic Tandem Solar Cells[J]. Science, 2018, 361(6405): 904-908.
[63] Al-Ashouri A, Kohnen E, Li B, et al. Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction[J]. Science, 2020, 370(6522): 1300-1309.
[64] Liu Q, Jiang Y, Jin K, et al. 18% Efficiency Organic Solar Cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[65] Zuo C, Ding L. Bulk Heterojunctions Push the Photoresponse of Perovskite Solar Cells to 970 nm[J]. Journal of Materials Chemistry A, 2015, 3(17): 9063-9066.
[66] Dong S, Liu Y, Hong Z, et al. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk- Heterojunction Solar Cells[J]. Nano Letters, 2017, 17(8): 5140-5147.
[67] Gao K, Zhu Z, Xu B, et al. Highly Efficient Porphyrin-Based Opv/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor[J]. Advanced Materials, 2017, 29(47): 1703980.
[68] Jiang K, Wei Q, Lai J Y L, et al. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells[J]. Joule, 2019, 3(12): 3020-3033.
[69] Wang C, Bai Y, Guo Q, et al. Enhancing Charge Transport in an Organic Photoactive Layer Via Vertical Component Engineering for Efficient Perovskite/Organic Integrated Solar Cells[J]. Nanoscale, 2019, 11(9): 4035-4043.
[70] Guo Q, Liu H, Shi Z, et al. Efficient Perovskite/Organic Integrated Solar Cells with Extended Photoresponse to 930 nm and Enhanced near-Infrared External Quantum Efficiency of over 50%[J]. Nanoscale, 2018, 10(7): 3245-3253.
[71] An Q, Zhang F, Zhang J, et al. Versatile Ternary Organic Solar Cells: A Critical Review[J]. Energy & Environmental Science, 2016, 9(2): 281-322.
[72] Chen W, Sun H, Hu Q, et al. High Short-Circuit Current Density Via Integrating the Perovskite and Ternary Organic Bulk Heterojunction[J]. ACS Energy Letters, 2019, 4(10): 2535-2536.
[73] Li C, Pan Y, Hu J, et al. Vertically Aligned 2D/3D Pb-Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells[J]. ACS Energy Letters, 2020, 5(5): 1386-1395.
[74] Zuo C, Ding L. Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells[J]. Advanced Energy Materials, 2017, 7(2): 1601193.
[75] Kim Y, Jung E H, Kim G, et al. Sequentially Fluorinated PTAA Polymers for Enhancing Voc of High-Performance Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(29): 1801668.
[76] Wang Y, Wang S, Chen X, et al. Largely Enhanced Voc and Stability in Perovskite Solar Cells with Modified Energy Match by Coupled 2D Interlayers[J]. Journal of Materials Chemistry A, 2018, 6(11): 4860-4867.
[77] Chiang C-H, Wu C-G. A Method for the Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor[J]. ACS Nano, 2018, 12(10): 10355-10364.
[78] Kim H D, Ohkita H. Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells[J]. Solar RRL, 2017, 1(6): 1700027.
[79] Yan W, Ye S, Li Y, et al. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells[J]. Advanced Energy Materials, 2016, 6(17): 1600474.
[80] Steirer K X, Ndione P F, Widjonarko N E, et al. Enhanced Efficiency in Plastic Solar Cells Via Energy Matched Solution Processed NiOx Interlayer[J]. Advanced Energy Materials, 2011, 1(5): 813-820.
[81] Zhu Z, Bai Y, Zhang T, et al. High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2014, 53(46): 12571-12575.
[82] Wang Y, Ju H, Mahmoudi T, et al. Cation-Size Mismatch and Interface Stabilization for Efficient NiOx-Based Inverted Perovskite Solar Cells with 21.9% Efficiency[J]. Nano Energy, 2021, 88: 106285.
[83] Zhou L, Lin Z, Ning Z, et al. Highly Efficient and Stable Planar Perovskite Solar Cells with Modulated Diffusion Passivation toward High Power Conversion Efficiency and Ultrahigh Fill Factor[J]. Solar RRL, 2019, 3(11): 1900293.
[84] He Q, Yao K, Wang X, et al. Room-Temperature and Solution- Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole- Transport Layers of Flexible Large-Area Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41887-41897.
[85] Chen W, Zhou Y, Wang L, et al. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell[J]. Advanced Materials, 2018, 30(20): 1800515.
[86] Bao H, Du M, Wang H, et al. Samarium-Doped Nickel Oxide for Superior Inverted Perovskite Solar Cells: Insight into Doping Effect for Electronic Applications[J]. Advanced Functional Materials, 2021, 31(34): 2102452.
[87] Jeng J-Y, Chiang Y-F, Lee M-H, et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[88] Yang D, Yang R, Priya S, et al. Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications[J]. Angewandte Chemie International Edition, 2019, 58(14): 4466-4483.
[89] Zhou W, Wen Z, Gao P. Less Is More: Dopant-Free Hole Transporting Materials for High-Efficiency Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(9): 1702512.
[90] Bi C, Wang Q, Shao Y, et al. Non-Wetting Surface-Driven High-Aspect- Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7747.
[91] Jung E D, Harit A K, Kim D H, et al. Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(30): 2002333.
[92] Wan L, Zhang W, Fu S, et al. Achieving over 21% Efficiency in Inverted Perovskite Solar Cells by Fluorinating a Dopant-Free Hole Transporting Material[J]. Journal of Materials Chemistry A, 2020, 8(14): 6517-6523.
[93] Sun X, Li Z, Yu X, et al. Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor[J]. Angewandte Chemie International Edition, 2021, 60(13): 7227-7233.
[94] Li B, Yang K, Liao Q, et al. Imide-Functionalized Triarylamine-Based Donor-Acceptor Polymers as Hole Transporting Layers for High-Performance Inverted Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(21): 2100332.
[95] Collins S D, Ran N, Heiber M C, et al. Small Is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells[J]. Advanced Energy Materials, 2017, 7(10): 1602242.
[96] Fan H, Zhu X. Development of Small-Molecule Materials for High-Performance Organic Solar Cells[J]. Science China Chemistry, 2015, 58(6): 922-936.
[97] Osedach T P, Andrew T L, Bulovic V. Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics[J]. Energy & Environmental Science, 2013, 6(3): 711-718.
[98] Labban A E, Chen H, Kirkus M, et al. Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement[J]. Advanced Energy Materials, 2016, 6(11): 1502101.
[99] Chen H, Fu W, Huang C, et al. Molecular Engineered Hole-Extraction Materials to Enable Dopant-Free, Efficient p-i-n Perovskite Solar Cell[J]. Advanced Energy Materials, 2017, 7(18): 1700012.
[100] Park S J, Jeon S, Lee I K, et al. Inverted Planar Perovskite Solar Cells with Dopant Free Hole Transporting Material: Lewis Base-Assisted Passivation and Reduced Charge Recombination[J]. Journal of Materials Chemistry A, 2017, 5(25): 13220-13227.
[101] Huang C, Fu W, Li C-Z, et al. Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2016, 138(8): 2528-2531.
[102] Reddy S S, Shin S, Aryal U K, et al. Highly Efficient Air-Stable/ Hysteresis Free Flexible Inverted-Type Planar Perovskite and Organic Solar Cells Employing a Small Molecular Organic Hole Transporting Material[J]. Nano Energy, 2017, 41: 10-17.
[103] Yang L, Cai F, Yan Y, et al. Conjugated Small Molecule for Efficient Hole Transport in High-Performance p-i-n Type Perovskite Solar Cells[J]. Advanced Functional Materials, 2017, 27(31): 1702613.
[104] Sun X, Xue Q, Zhu Z, et al. Fluoranthene-Based Dopant-Free Hole Transporting Materials for Efficient Perovskite Solar Cells[J]. Chemical Science, 2018, 9(10): 2698-2704.
[105] Shang R, Zhou Z, Nishioka H, et al. Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2018, 140(15): 5018-5022.
[106] Wang Y, Chen W, Wang L, et al. Dopant-Free Small-Molecule Hole- Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%[J]. Advanced Materials, 2019, 31(35): 1902781.
[107] Chen W, Wang Y, Liu B, et al. Engineering of Dendritic Dopant-Free Hole Transport Molecules: Enabling Ultrahigh Fill Factor in Perovskite Solar Cells with Optimized Dendron Construction[J]. Science China Chemistry, 2021, 64(1): 41-51.
[108] Mahmood K, Sarwar S, Mehran M T. Current Status of Electron Transport Layers in Perovskite Solar Cells: Materials and Properties[J]. RSC Advances, 2017, 7(28): 17044-17062.
[109] Fang R, Wu S, Chen W, et al.
[6,6]-Phenyl-C61-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells[J]. ACS Nano, 2018, 12(3): 2403-2414.
[110] Yan Y. Perovskite Solar Cells: High Voltage from Ordered Fullerenes[J]. Nature Energy, 2016, 1(1): 15007.
[111] Huo Y, Zhang H, Zhan X. Nonfullerene All-Small-Molecule Organic Solar Cells[J]. ACS Energy Letters, 2019, 4(6): 1241-1250.
[112] Zhang M, Zhan X. Nonfullerene n-Type Organic Semiconductors for Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(25): 1900860.
[113] Qin M, Cao J, Zhang T, et al. Fused-Ring Electron Acceptor ITIC-Th: A Novel Stabilizer for Halide Perovskite Precursor Solution[J]. Advanced Energy Materials, 2018, 8(18): 1703399.
[114] Zhao D, Zhu Z, Kuo M-Y, et al. Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2016, 55(31): 8999-9003.
[115] Xue Q, Chen G, Liu M, et al. Improving Film Formation and Photovoltage of Highly Efficient Inverted-Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers[J]. Advanced Energy Materials, 2016, 6(5): 1502021.
[116] Gu P-Y, Wang N, Wang C, et al. Pushing up the Efficiency of Planar Perovskite Solar Cells to 18.2% with Organic Small Molecules as the Electron Transport Layer[J]. Journal of Materials Chemistry A, 2017, 5(16): 7339-7344.
[117] Castro E, Sisto T J, Romero E L, et al. Cove-Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2017, 56(46): 14648-14652.
[118] Luo Z, Wu F, Zhang T, et al. Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability[J]. Angewandte Chemie International Edition, 2019, 58(25): 8520-8525.
[119] Sun C, Wu Z, Yip H-L, et al. Amino-Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High-Performance Planar-Heterojunction Perovskite Solar Cells[J]. Advanced Energy Materials, 2016, 6(5): 1501534.
[120] Kim H I, Kim M-J, Choi K, et al. Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel N-Based Polymer as the Electron Transport Layer[J]. Advanced Energy Materials, 2018, 8(16): 1702872.
[121] Shi Y, Chen W, Wu Z, et al. Imide-Functionalized Acceptor–Acceptor Copolymers as Efficient Electron Transport Layers for High-Performance Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(27): 13754-13762.
[122] Chen W, Shi Y, Wang Y, et al. N-Type Conjugated Polymer as Efficient Electron Transport Layer for Planar Inverted Perovskite Solar Cells with Power Conversion Efficiency of 20.86%[J]. Nano Energy, 2020, 68: 104363.
[123] Jung S K, Heo J H, Oh B M, et al. Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 30(13): 1905951.
[124] Li F, Deng X, Qi F, et al. Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency[J]. Journal of the American Chemical Society, 2020, 142(47): 20134-20142.
[125] Noh J H, Im S H, Heo J H, et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells[J]. Nano Letter, 2013, 13(4): 1764-1769.
[126] Niu G, Guo X, Wang L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.
[127] Hwang I, Jeong I, Lee J, et al. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17330-17336.
[128] Lee J W, Bae S H, De Marco N, et al. The Role of Grain Boundaries in Perovskite Solar Cells[J]. Materials Today Energy, 2018, 7: 149-160.
[129] Leguy A M A, Hu Y, Campoy-Quiles M, et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells[J]. Chemistry of Materials, 2015, 27(9): 3397-3407.
[130] Lee J W, Park N G. Chemical Approaches for Stabilizing Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 10(1): 1903249.
[131] Zhang S, Liu Z, Zhang W, et al. Barrier Designs in Perovskite Solar Cells for Long-Term Stability[J]. Advanced Energy Materials, 2020, 10(35): 2001610.
[132] Zhou Y, Hu J, Wu Y, et al. Review on Methods for Improving the Thermal and Ambient Stability of Perovskite Solar Cells[J]. Journal of Photonics for Energy, 2019, 9(4): 040901.
[133] Saliba M, Matsui T, Seo J Y, et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997.
[134] Matsui T, Yokoyma T, Negami T, et al. Effect of Rubidium for Thermal Stability of Triple-Cation Perovskite Solar Cells[J]. Chemistry Letters, 2018, 47(6): 814-816.
[135] Wang R, Xue J, Meng L, et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells[J]. Joule, 2019, 3(6): 1464-1477.
[136] ChoiI K, Lee J, Choi H, et al. Heat Dissipation Effects on the Stability of Planar Perovskite Solar Cells[J]. Energy & Environmental Science, 2020, 13(12): 5059-5067.
[137] Prasanna R, Leijtens T, Dunfield S P, et al. Design of Low Bandgap Tin-Lead Halide Perovskite Solar Cells to Achieve Thermal, Atmospheric and Operational Stability[J]. Nature Energy, 2019, 4(11): 939-947.
[138] Bella F, Griffini G, Correa-Baena J P, et al. Improving Efficiency and Stability of Perovskite Solar Cells with Photocurable Fluoropolymers[J]. Science, 2016, 354(6309): 203-206.
[139] Deng K, Chen Q, Shen Y, et al. Improving Uv Stability of Perovskite Solar Cells without Sacrificing Efficiency through Light Trapping Regulated Spectral Modification[J]. Science Bulletin, 2021, 66(23): 2362-2368.
[140] Leijtens T, Eperon G E, Pathak S, et al. Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells[J]. Nature Communications, 2013, 4(1): 2885.
[141] Yuan Y, Wang Q, Shao Y, et al. Electric-Field-Driven Reversible Conversion between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures[J]. Advanced Energy Materials, 2016, 6(2): 1501803.
[142] Wang L, Zhou H, Hu J, et al. A Eu(3+)-Eu(2+) Ion Redox Shuttle Imparts Operational Durability to Pb-I Perovskite Solar Cells[J]. Science, 2019, 363(6424): 265-270.
[143] Mizusaki J, Arai K, Fueki K. Ionic Conduction of the Perovskite- Type Halides[J]. Solid State Ionics, 1983, 11(3): 203-211.
[144] Yuan Y, Huang J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293.
[145] Eames C, Frost J M, Barnes P R F, et al. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7497.
[146] Xia G, Huang B, Zhang Y, et al. Nanoscale Insights into Photovoltaic Hysteresis in Triple-Cation Mixed-Halide Perovskite: Resolving the Role of Polarization and Ionic Migration[J]. Advanced Materials, 2019, 31(36): 1902870.
[147] Snaith H J, Abate A, Ball J M, et al. Anomalous Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1511-1515.
[148] Luo D, Su R, Zhang W, et al. Minimizing Non-Radiative Recombination Losses in Perovskite Solar Cells[J]. Nature Reviews Materials, 2019, 5(1): 44-60.
[149] Cowan S R, Roy A, Heeger A J. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells[J]. Physical Review B, 2010, 82(24): 245207.
[150] Nazerdeylami S. Dominant Recombination Mechanism in Perovskite Solar Cells: A Theoretical Study[J]. Solar Energy, 2020, 206: 27-34.
[151] Liu Z, Niu S, Wang N. Light Illumination Intensity Dependence of Photovoltaic Parameter in Polymer Solar Cells with Ammonium Heptamolybdate as Hole Extraction Layer[J]. Journal of Colloid and Interface Science, 2018, 509: 171-177.
[152] Poplavskyy D, Nelson J. Nondispersive Hole Transport in Amorphous Films of Methoxy-Spirofluorene-Arylamine Organic Compound[J]. Journal of Applied Physics, 2003, 93(1): 341-346.
[153] Chen J, Park N-G. Causes and Solutions of Recombination in Perovskite Solar Cells[J]. Advanced Materials, 2019, 31(47): 1803019.
[154] Zuo L, Dong S, De Marco N, et al. Morphology Evolution of High Efficiency Perovskite Solar Cells Via Vapor Induced Intermediate Phases[J]. Journal of the American Chemical Society, 2016, 138(48): 15710-15716.
[155] Mohd Yusoff A R B, Vasilopoulou M, Georgiadou D G, et al. Passivation and Process Engineering Approaches of Halide Perovskite Films for High Efficiency and Stability Perovskite Solar Cells[J]. Energy & Environmental Science, 2021, 14(5): 2906-2953.
[156] Chiang C-H, Wu C-G. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells[J]. ChemSusChem, 2016, 9(18): 2666-2672.
[157] Li H, Wu G, Li W, et al. Additive Engineering to Grow Micron-Sized Grains for Stable High Efficiency Perovskite Solar Cells[J]. Advanced Science, 2019, 6(18): 1901241.
[158] Wang R, Xue J, Wang K, et al. Constructive Molecular Configurations for Surface-Defect Passivation of Perovskite Photovoltaics[J]. Science, 2019, 366(6472): 1509-1513.
[159] Wu T, Wang Y, Li X, et al. Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules[J]. Advanced Energy Materials, 2019, 9(17): 1803766.
[160] Cardona C M, Li W, Kaifer A E, et al. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications[J]. Advanced Materials, 2011, 23(20): 2367-2371.
[161] Li S, He B, Xu J, et al. Highly Efficient Inverted Perovskite Solar Cells Incorporating P3CT-Rb as a Hole Transport Layer to Achieve a Large Open Circuit Voltage of 1.144 V[J]. Nanoscale, 2020, 12(6): 3686-3691.
[162] Xiong S, Dai Y, Yang J, et al. Surface Charge-Transfer Doping for Highly Efficient Perovskite Solar Cells[J]. Nano Energy, 2021, 79:105505.
[163] Choi H, Mai C-K, Kim H-B, et al. Conjugated Polyelectrolyte Hole Transport Layer for Inverted-Type Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7348.
[164] Liu Y, Renna L A, Page Z A, et al. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions[J]. Advanced Energy Materials, 2016, 6(20): 1600664.
[165] Li X, Liu X, Wang X, et al. Polyelectrolyte Based Hole-Transporting Materials for High Performance Solution Processed Planar Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3(29): 15024-15029.
[166] Wang D, Ye T, Zhang Y. Recent Advances of Non-Fullerene Organic Electron Transport Materials in Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(40): 20819-20848.
[167] Li X, Wang Y-C, Zhu L, et al. Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31357-31361.
[168] Liang M, Chen J. Arylamine Organic Dyes for Dye-Sensitized Solar Cells[J]. Chemical Society Reviews, 2013, 42(8): 3453-3488.
[169] Ulman A. Formation and Structure of Self-Assembled Monolayers[J]. Chemical Reviews, 1996, 96(4): 1533-1554.
[170] Choi K, Choi H, Min J, et al. A Short Review on Interface Engineering of Perovskite Solar Cells: A Self-Assembled Monolayer and Its Role[J]. Solar RRL, 2020, 4(2): 1900251.
[171] Xie J, Yan K, Zhu H, et al. Identifying the Functional Groups Effect on Passivating Perovskite Solar Cells[J]. Science Bulletin, 2020, 65(20): 1726-1734.
[172] Guo X, Liao Q, Manley E F, et al. Materials Design Via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors[J]. Chemistry of Materials, 2016, 28(7): 2449-2460.
[173] OEHZELT M, KOCH N, HEIMEL G. Organic Semiconductor Density of States Controls the Energy Level Alignment at Electrode Interfaces[J]. Nature Communications, 2014, 5(1): 4174.
[174] Kong W, Li W, Liu C, et al. Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells[J]. ACS Nano, 2019, 13(2): 1625-1634.
[175] Lin X, Cui D, Luo X, et al. Efficiency Progress of Inverted Perovskite Solar Cells[J]. Energy & Environmental Science, 2020, 13(11): 3823-3847.
[176] Ali J, Gao P, Zhou G, et al. Elucidating the Roles of Hole Transport Layers in p-i-n Perovskite Solar Cells[J]. Advanced Electronic Materials, 2020, 6(12): 2000149.
[177] Jiang Q, Chu Z, Wang P, et al. Planar-Structure Perovskite Solar Cells with Efficiency Beyond 21%[J]. Advanced Materials, 2017, 29(46): 1703852.
[178] Singh R, Shukla V K. ITIC-Based Bulk Heterojunction Perovskite Film Boosting the Power Conversion Efficiency and Stability of the Perovskite Solar Cell[J]. Solar Energy, 2019, 178: 90-97.
[179] Zhao S, Xie J, Cheng G, et al. General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability[J]. Small, 2018, 14(50): e1803350.
[180] Chen B, Yang M, Priya S, et al. Origin of J–V Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917.
[181] Kang D-H, Park N-G. On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis[J]. Advanced Materials, 2019, 31(34): 1805214.
[182] Liu P, Wang W, Liu S, et al. Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(13): 1803017.
[183] Riedel I, Parisi J, Dyakonov V, et al. Effect of Temperature and Illumination on the Electrical Characteristics of Polymer-Fullerene Bulk- Heterojunction Solar Cells[J]. Advanced Functional Materials, 2004, 14(1): 38-44.
[184] Wetzelaer G J, Scheepers M, Sempere A M, et al. Trap-Assisted Non-Radiative Recombination in Organic-Inorganic Perovskite Solar Cells[J]. Advanced Materials, 2015, 27(11): 1837-1841.
[185] Wang K, Liu J, Yin J, et al. Defect Passivation in Perovskite Solar Cells by Cyano-Based π-Conjugated Molecules for Improved Performance and Stability[J]. Advanced Functional Materials, 2020, 30(35): 2002861.
[186] Cao Y, Li Y, Morrissey T, et al. Dopant-Free Molecular Hole Transport Material That Mediates a 20% Power Conversion Efficiency in a Perovskite Solar Cell[J]. Energy & Environmental Science, 2019, 12(12): 3502-3507.
[187] Jiang K, Wang J, Wu F, et al. Dopant-Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(16): 1908011.
[188] Yin X, Zhou J, Song Z, et al. Dithieno
[3,2-b:2′, 3′-d]Pyrrol-Cored Hole Transport Material Enabling over 21% Efficiency Dopant-Free Perovskite Solar Cells[J]. Advanced Functional Materials, 2019, 29(38): 1904300.
[189] Zhang J, Sun Q, Chen Q, et al. Dibenzo[b,d]Thiophene-Cored Hole- Transport Material with Passivation Effect Enabling the High-Efficiency Planar p-i-n Perovskite Solar Cells with 83% Fill Factor[J]. Solar RRL, 2020, 4(3): 1900421.
[190] You G, Zhuang Q, Wang L, et al. Dopant-Free, Donor-Acceptor-Type Polymeric Hole-Transporting Materials for the Perovskite Solar Cells with Power Conversion Efficiencies over 20%[J]. Advanced Energy Materials, 2020, 10(5): 1903146.
[191] Lu H, He B, Ji Y, et al. Dopant-Free Hole Transport Materials Processed with Green Solvent for Efficient Perovskite Solar Cells[J]. Chemical Engineering Journal, 2020, 385: 123976.
[192] Lee J, Malekshahi Byranvand M, Kang G, et al. Green-Solvent- Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(35): 12175-12181.
[193] Lee J, Kim G-W, Kim M, et al. Nonaromatic Green-Solvent-Processable, Dopant-Free, and Lead-Capturable Hole Transport Polymers in Perovskite Solar Cells with High Efficiency[J]. Advanced Energy Materials, 2020, 10(8): 1902662.
[194] Gardner K L, Tait J G, Merckx T, et al. Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics[J]. Advanced Energy Materials, 2016, 6(14): 1600386.
[195] Bu T, Wu L, Liu X, et al. Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells[J]. Advanced Energy Materials, 2017, 7(20): 1700576.
[196] Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(21): 1800177.
[197] Mishra A, Fischer M K R, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules[J]. Angewandte Chemie International Edition, 2009, 48(14): 2474-2499.
[198] Lee C-P, Li C-T, Ho K-C. Use of Organic Materials in Dye-Sensitized Solar Cells[J]. Materials Today, 2017, 20(5): 267-283.
[199] Zhou N, Prabakaran K, Lee B, et al. Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(13): 4414-4423.
[200] Ok S A, Jo B, Somasundaram S, et al. Management of Transition Dipoles in Organic Hole-Transporting Materials under Solar Irradiation for Perovskite Solar Cells[J]. Nature Communication, 2018, 9(1): 4537.
[201] Hagfeldt A, Boschloo G, Sun L, et al. Dye-Sensitized Solar Cells[J]. Chemical Reviews, 2010, 110(11): 6595-6663.
[202] Li X, Chen C-C, Cai M, et al. Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with -COOH Functional Group[J]. Advanced Energy Materials, 2018, 8(20): 1800715.
[203] Li L, Wu Y, Li E, et al. Self-Assembled Naphthalimide Derivatives as an Efficient and Low-Cost Electron Extraction Layer for n-i-p Perovskite Solar Cells[J]. Chemical Communications, 2019, 55(88): 13239-13242.
[204] BERLIN A, ZOTTI G, SCHIAVON G, et al. Adsorption of Carboxyl- Terminated Dithiophene and Terthiophene Molecules on ITO Electrodes and Their Electrochemical Coupling to Polymer Layers. The Influence of Molecular Geometry[J]. Journal of the American Chemical Society, 1998, 120(51): 13453-13460.
[205] Chiykowski V A, Cao Y, Tan H, et al. Precise Control of Thermal and Redox Properties of Organic Hole-Transport Materials[J]. Angewandte Chemie International Edition, 2018, 57(47): 15529-15533.
[206] Kranthiraja K, Gunasekar K, Kim H, et al. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers[J]. Advanced Materials, 2017, 29(23): 1700183.
[207] Qin P, Paek S, Dar M I, et al. Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material[J]. Journal of the American Chemical Society, 2014, 136(24): 8516-8519.
[208] Petrus M L, Bein T, Dingemans T J, et al. A Low Cost Azomethine- Based Hole Transporting Material for Perovskite Photovoltaics[J]. Journal of Materials Chemistry A, 2015, 3(23): 12159-12162.
[209] Murakami T N, Koumura N. Development of Next-Generation Organic-Based Solar Cells: Studies on Dye-Sensitized and Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(23): 1802967.
[210] Wang X, Zhang J, Yu S, et al. Lowering Molecular Symmetry to Improve the Morphological Properties of the Hole-Transport Layer for Stable Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2018, 57(38): 12529-12533.
[211] Liao Q, Wang Y, Uddin M A, et al. Drastic Effects of Fluorination on Backbone Conformation of Head-to-Head Bithiophene-Based Polymer Semiconductors[J]. ACS Macro Letters, 2018, 7(5): 519-524.
[212] Rakstys K, Abate A, Dar M I, et al. Triazatruxene-Based Hole- Transporting Materials for Highly Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(51): 16172-16178.
[213] Magomedov A, Al-Ashouri A, Kasparavicius E, et al. Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(32): 1801892.
[214] Jiang E, Ai Y, Yan J, et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36727-36734.
[215] Aydin E, De Bastiani M, De Wolf S. Defect and Contact Passivation for Perovskite Solar Cells[J]. Advanced Materials, 2019, 31(25): e1900428.
[216] Gao F, Zhao Y, Zhang X, et al. Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 10(13): 1902650.
[217] Ono L K, Liu S, Qi Y. Reducing Detrimental Defects for High- Performance Metal Halide Perovskite Solar Cell[J]. Angewandte Chemie International Edition, 2020, 59(17): 6676-6698.
[218] Xiao Q, Tian J, Xue Q, et al. Dopant-Free Squaraine-Based Polymeric Hole-Transporting Materials with Comprehensive Passivation Effects for Efficient All-Inorganic Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2019, 58(49): 17724-17730.
[219] Wang Q, Mosconi E, Wolff C, et al. Rationalizing the Molecular Design of Hole-Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(28): 1900990.
[220] Hu J, Xu T, Cheng Y. Nmr Insights into Dendrimer-Based Host–Guest Systems[J]. Chemical Reviews, 2012, 112(7): 3856-3891.
[221] Santo M, Fox M A. Hydrogen Bonding Interactions between Starburst Dendrimers and Several Molecules of Biological Interest[J]. Journal of Physical Organic Chemistry, 1999, 12(4): 293-307.
[222] Wang Z, Cui Y, Dan-Oh Y, et al. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid[J]. Journal of Physical Chemistry C, 2007, 111(19): 7224-7230.
[223] Wu T, Wang Y, Dai Z, et al. Efficient and Stable CsPbI3 Solar Cells Via Regulating Lattice Distortion with Surface Organic Terminal Groups[J]. Advanced Materials, 2019, 31(24): 1900605.
[224] Zhao Y, Wei J, Li H, et al. A Polymer Scaffold for Self-Healing Perovskite Solar Cells[J]. Nature Communications, 2016, 7(1): 10228.
[225] Schilinsky P, Waldauf C, Brabec C J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.
[226] Azmi R, Oh S H, Jang S Y. High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions[J]. ACS Energy Letters, 2016, 1(1): 100-106.
[227] Mandoc M M, Veurman W, Koster L J A, et al. Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells[J]. Advanced Functional Materials, 2007, 17(13): 2167-2173.
[228] Tu B, Wang Y, Chen W, et al. Side-Chain Engineering of Donor- Acceptor Conjugated Small Molecules as Dopant-Free Hole-Transport Materials for Efficient Normal Planar Perovskite Solar Cells[J]. Applied Materials & Interfaces, 2019, 11(51): 48556-48563.
[229] Park N G, Gratzel M, Miyasaka T, et al. Towards Stable and Commercially Available Perovskite Solar Cells[J]. Nature Energy, 2016, 1(11): 16152.
[230] Kim S Y, Cho S J, Byeon S E, et al. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells[J]. Advanced Energy Materials, 2020, 10(44): 2002606.
[231] Halik M, Hirsch A. The Potential of Molecular Self-Assembled Monolayers in Organic Electronic Devices[J]. Advanced Materials, 2011, 23(22-23): 2689-2695.
[232] Casalini S, Bortolotti C A, Leonardi F, et al. Self-Assembled Monolayers in Organic Electronics[J]. Chemical Society Reviews, 2017, 46(1): 40-71.
[233] Ali F, Roldán-Carmona C, Sohail M, et al. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability[J]. Advanced Energy Materials, 2020, 10(48): 2002989.
[234] Yang Q, Wang X, Yu S, et al. Solvent-Actuated Self-Assembly of Amphiphilic Hole-Transporting Polymer Enables Bottom-Surface Passivation of Perovskite Film for Efficient Photovoltaics[J]. Advanced Energy Materials, 2021, 11(17): 2100493.
[235] Chang C-Y, Huang H-H, Tsai H, et al. Facile Fabrication of Self- Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells[J]. Advanced Science, 2021, 8(5): 2002718.
[236] Wolff C M, Canil L, Rehermann C, et al. Perfluorinated Self- Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells[J]. ACS Nano, 2020, 14(2): 1445-1456.
[237] Li E, Bi E, Wu Y, et al. Synergistic Coassembly of Highly Wettable and Uniform Hole-Extraction Monolayers for Scaling-up Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 30(7): 1909509.
[238] Al-Ashouri A, Magomedov A, Roß M, et al. Conformal Monolayer Contacts with Lossless Interfaces for Perovskite Single Junction and Monolithic Tandem Solar Cells[J]. Energy & Environmental Science, 2019, 12(11): 3356-3369.
[239] Chen C, Cheng M, Liu P, et al. Application of Benzodithiophene Based A-D-A Structured Materials in Efficient Perovskite Solar Cells and Organic Solar Cell[J]. Nano Energy, 2016, 23: 40-49.
[240] Aktas E, Phung N, Köbler H, et al. Understanding the Perovskite/ Self-Assembled Selective Contact Interface for Ultra Stable and Highly Efficient p-i-n Perovskite Solar Cells[J]. Energy & Environmental Science, 2021, 14(7): 3976-3985.
[241] Li E, Liu C, Lin H, et al. Bonding Strength Regulates Anchoring-Based Self-Assembly Monolayers for Efficient and Stable Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(35): 2103847.
[242] Liu H, Li Z, Zhao D. Rhodanine-Based Nonfullerene Acceptors for Organic Solar Cells[J]. Science China-Materials, 2019, 62(11): 1574-1596.
[243] Pujari S P, Scheres L, Marcelis A T M, et al. Covalent Surface Modification of Oxide Surfaces[J]. Angewandte Chemie International Edition, 2014, 53(25): 6322-6356.
[244] Choi, J, Sakurai K, Kato T. Observation of Self-Assembled Monolayers on Diamond-Like Carbon Films: Agglomeration of Self-Assembled FDTS Molecules[J]. Surface and Interfaces Analysis, 2010, 42(6-7): 1373-1376.
[245] Li W, Liu H, iu C, et al. Approaching Optimal Hole Transport Layers by an Organic Monomolecular Strategy for Efficient Inverted Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(32): 16560-16569.
[246] Lange I, Reiter S, Patzel M, et al. Tuning the Work Function of Polar Zinc Oxide Surfaces Using Modified Phosphonic Acid Self Assembled Monolayers[J]. Advanced Functional Materials, 2014, 24(44): 7014-7024.
[247] Yao Z, Zhang F, Guo Y, et al. Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2020, 142(41): 17681-17692.
[248] Du M, Zhu X, Wang L, et al. High-Pressure Nitrogen-Extraction and Effective Passivation to Attain Highest Large-Area Perovskite Solar Module Efficiency[J]. Advanced Materials, 2020, 32(47): e2004979.
[249] Chen X, Zhang Z, Ding Z, et al. Diketopyrrolopyrrole-Based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices[J]. Angewandte Chemie International Edition, 2016, 55(35): 10376-10380.
[250] Jiang Q, Chu Z, Wang P, et al. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%[J]. Advanced Materials, 2017, 29(46):1703852.
[251] Luo C, Zhao Y, Wang X, et al. Self-Induced Type-I Band Alignment at Surface Grain Boundaries for Highly Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2021, 33(40):2103231.
[252] Azimi R, Hadmojo W T, Sinaga S, et al. High Efficiency Low Temperature ZnO Based Perovskite Solar Cells Based on Highly Polar, Nonwetting Self-Assembled Molecular Layers[J]. Advanced Energy Materials, 2018, 8(5): 1701683.
[253] Stolterfoht M, Wolff C M, Marquez J A, et al. Visualization and Suppression of Interfacial Recombination for High-Efficiency Large-Area Pin Perovskite Solar Cells[J]. Nature Energy, 2018, 3(10): 847-854.
[254] Cheng H, Li Y, Zhang M, et al. Self-Assembled Ionic Liquid for Highly Efficient Electron Transport Layer-Free Perovskite Solar Cells[J]. ChemSusChem, 2020, 13(10): 2779-2785.
[255] Huang J, Yang J, Li D, et al. A Low-Cost and Green Solvent Processable Hole Transport Material Enabled by a Traditional Bidentate Ligand for Highly Efficient Inverted Perovskite Solar Cells[J]. Journal of Materials Chemistry C, 2021, 9(28): 8930-8938.
[256] Meng F, Wang Y, Wen Y, et al. Dopant-Free and Green-Solvent- Processable Hole-Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells[J]. Solar RRL, 2020, 4(10): 2000327.
[257] Cho A-N, Park N G. Impact of Interfacial Layers in Perovskite Solar Cell[J]. ChemSusChem, 2017, 10(19): 3687-3704.
[258] Castro-Méndez A-F, Hidalgo J, Correa-Baena J-P. The Role of Grain Boundaries in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(38): 1901489.
[259] Lefebvre C, Rubez G, Khartabil H, et al. Accurately Extracting the Signature of Intermolecular Interactions Present in the NCI Plot of the Reduced Density Gradient Versus Electron Density[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17928-17936.
[260] Qian F, Yuan S, Cai Y, et al. Novel Surface Passivation for Stable FA0.85MA0.15PbI3 Perovskite Solar Cells with 21.6% Efficiency[J]. Solar RRL, 2019, 3(7): 1900072.
[260] Metrangolo P, Canil L, Abate A, et al. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion[J]. Angewandte Chemie International Edition, 2021, 61(11): e202114793.
[262] Más-Montoya M, Janssen R A J. The Effect of H- and J-Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene- Pyridine-DPP Molecules for Bulk-Heterojunction Solar Cells[J]. Advanced Functional Materials, 2017, 27(16): 1605779.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/356267
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
廖巧干. 反式钙钛矿太阳能电池的空穴传输层及光伏性能研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849537-廖巧干-材料科学与工程(12085KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[廖巧干]的文章
百度学术
百度学术中相似的文章
[廖巧干]的文章
必应学术
必应学术中相似的文章
[廖巧干]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。