[1] Becquerel A E. Recherches Sur Les Effects De La Radiation Chimique De La Lumière Solaire, Au Moyen Des Courants électriques[J]. Comptes Rendus de L´Academie des Sciences, 1839, 9: 145-149.
[2] Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics, 1954, 25(5): 676-677.
[3] Green M A. Silicon Photovoltaic Modules: A Brief History of the First 50 Years[J]. Progress in Photovoltaics, 2005, 13(5): 447-455.
[4] Shah A, Torres P, Tscharner R, et al. Photovoltaic Technology: The Case for Thin-Film Solar Cells[J]. Science, 1999, 285(5428): 692-698.
[5] Yoo J J, Seo G, Chua M R, et al. Efficient Perovskite Solar Cells Via Improved Carrier Management[J]. Nature, 2021, 590(7847): 587-593.
[6] Park N-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology[J]. Materials Today, 2015, 18(2): 65-72.
[7] Wang Y, Han L. Research Activities on Perovskite Solar Cells in Chin[J]. Science China Chemistry, 2019, 62(7): 822-828.
[8] Jena A K, Kulkarni A, Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects[J]. Chemical Reviews, 2019, 119(5): 3036-3103.
[9] Gong J, Darling S B, You F. Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts[J]. Energy & Environmental Science, 2015, 8(7): 1953-1968.
[10] Liu J, Yao M, Shen L. Third Generation Photovoltaic Cells Based on Photonic Crystals[J]. Journal of Materials Chemistry C, 2019, 7(11): 3121-3145.
[11] Arjunan T V, Senthil T S. Review: Dye Sensitised Solar Cells[J]. Materials Technology, 2013, 28(1-2): 9-14.
[12] Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell- efficiency. html.
[13] Yin W, Shi T, Yan Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber[J]. Applied Physics Letters, 2014, 104(6): 063903.
[14] Yin W-J, Yang J-H, Kang J, et al. Halide Perovskite Materials for Solar Cells: A Theoretical Review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942.
[15] Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038.
[16] Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[17] Wehrenfennig C, Eperon G E, Johnston M B, et al. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.
[18] Ponseca C S, Savenije T J, Abdellah M, et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination[J]. Journal of the American Chemical Society, 2014, 136(14): 5189-5192.
[19] Li Y, Yan W, Li Y, et al. Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film[J]. Scientific Reports, 2015, 5(1): 14485.
[20] Dittrich T, Lang F, Shargaieva O, et al. Diffusion Length of Photo-Generated Charge Carriers in Layers and Powders of CH3NH3PbI3 Perovskite[J]. Applied Physics Letters, 2016, 109(7): 073901.
[21] Zhang F, Yang B, Li Y, et al. Extra Long Electron-Hole Diffusion Lengths in CH3NH3PbI3-xClx Perovskite Single Crystals[J]. Journal of Materials Chemistry C, 2017, 5(33): 8431-8435.
[22] Ryu S, Noh J H, Jeon N J, et al. Voltage Output of Efficient Perovskite Solar Cells with High Open-Circuit Voltage and Fill Factor[J]. Energy & Environmental Science, 2014, 7(8): 2614-2618.
[23] Zhou X, Zhang L, Wang X, et al. Highly Efficient and Stable Gabr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V[J]. Advanced Materials, 2020, 32(14): 1908107.
[24] Qiu L, Ono L K, Qi Y. Advances and Challenges to the Commercialization of Organic–Inorganic Halide Perovskite Solar Cell Technology[J]. Materials Today Energy, 2018, 7: 169-189.
[25] Correa-Baena J P, Saliba M, Buonassisi T, et al. Promises and Challenges of Perovskite Solar Cells[J]. Science, 2017, 358(6364): 739-744.
[26] Im J H, Kim H S, Park N G. Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step Versus Two-Step Deposition of CH3NH3PbI3[J]. APL Materials, 2014, 2(8): 081510.
[27] Li M, Yang Y-G, Wang Z-K, et al. Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability[J]. Advanced Materials, 2019, 31(25): 1901519.
[28] Wang J, Li J, Zhou Y, et al. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[29] Zheng X, Hou Y, Bao C, et al. Managing Grains and Interfaces Via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells[J]. Nature Energy, 2020, 5(2): 131-140.
[30] Deng W, Li F, Li J, et al. Anti-Solvent Free Fabrication of FA-Based Perovskite at Low Temperature Towards to High Performance Flexible Perovskite Solar Cells[J]. Nano Energy, 2020, 70: 104505.
[31] Yang C, Wang H, Miao Y, et al. Interfacial Molecular Doping and Energy Level Alignment Regulation for Perovskite Solar Cells with Efficiency Exceeding 23%[J]. ACS Energy Letters, 2021, 6(8): 2690-2696.
[32] Wang P, Chen B, Li R, et al. Cobalt Chloride Hexahydrate Assisted in Reducing Energy Loss in Perovskite Solar Cells with Record Open-Circuit Voltage of 1.20 V[J]. ACS Energy Letters, 2021, 6(6): 2121-2128.
[33] Liu M, Johnston M B, Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature, 2013, 501(7467): 395-398.
[34] Chen Q, Zhou H, Hong Z, et al. Planar Heterojunction Perovskite Solar Cells Via Vapor-Assisted Solution Process[J]. Journal of the American Chemical Society, 2014, 136(2): 622-625.
[35] Burschka J, Pellet N, Moon S J, et al. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells[J]. Nature, 2013, 499(7458): 316-319.
[36] Chen B, Rudd P N, Yang S, et al. Imperfections and Their Passivation in Halide Perovskite Solar Cells[J]. Chemical Society Reviews, 2019, 48(14): 3842-3867.
[37] Abate A, Saliba M, Hollman D J, et al. Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells[J]. Nano Letter, 2014, 14(6): 3247-3254.
[38] Stranks S D. Nonradiative Losses in Metal Halide Perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525.
[39] Xue J, Wang R, Wang K-L, et al. Crystalline Liquid-Like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film[J]. Journal of the American Chemical Society, 2019, 141(35): 13948-13953.
[40] Lee J-W, Kim H-S, Park N-G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells[J]. Accounts of Chemical Research, 2016, 49(2): 311-319.
[41] Noel N K, Abate A, Stranks S D, et al. Enhanced Photoluminescence and Solar Cell Performance Via Lewis Base Passivation of Organic– Inorganic Lead Halide Perovskites[J]. ACS Nano, 2014, 8(10): 9815-9821.
[42] Zhang H, Nazeeruddin M K, Choy W C H. Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability[J]. Advanced Materials, 2019, 31(8): 1805702.
[43] Peng J, Khan J I, Liu W, et al. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(Methyl Methacrylate)[J]. Advanced Energy Materials, 2018, 8(30): 1801208.
[44] Chen W, Wang Y, Pang G, et al. Conjugated Polymer-Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells[J]. Advanced Functional Materials, 2019, 29(27): 1808855.
[45] Niu T, Lu J, Munir R, et al. Stable High-Performance Perovskite Solar Cells Via Grain Boundary Passivation[J]. Advanced Materials, 2018, 30(16): e1706576.
[46] Lin Y, Shen L, Dai J, et al. Pi-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells[J]. Advanced Materials, 2017, 29(7): 1604545.
[47] Niu T, Lu J, Tang M-C, et al. High Performance Ambient-Air-Stable FAPbI3 Perovskite Solar Cells with Molecule-Passivated Ruddlesden–Popper/3D Heterostructured Film[J]. Energy & Environmental Science, 2018, 11(12): 3358-3366.
[48] Lee M M, Teuscher J, Miyasaka T, et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012, 338(6107): 643-647.
[49] Jeong M, Choi I W, Go E M, et al. Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3 V Voltage Loss[J]. Science, 2020, 369(6511): 1615-1620.
[50] Lu H, Liu Y, Ahlawat P, et al. Vapor-Assisted Deposition of Highly Efficient, Stable Black-Phase FAPbI3 Perovskite Solar Cells[J]. Science, 2020, 370(6512): eabb8985.
[51] Kim G, Min H, Lee K S, et al. Impact of Strain Relaxation on Performance of Alpha-Formamidinium Lead Iodide Perovskite Solar Cells[J]. Science, 2020, 370(6512): 108-112.
[52] Wang P, Zhao Y, Wang T. Recent Progress and Prospects of Integrated Perovskite/Organic Solar Cells[J]. Applied Physics Reviews, 2020, 7(3): 031303.
[53] Liao J H-H. Behind the Breakthrough of the ∼30% Perovskite Solar Cell[J]. Joule, 2021, 5(2): 295-297.
[54] Yang D, Zhang X, Hou Y, et al. 28.3%-Efficiency Perovskite/Silicon Tandem Solar Cell by Optimal Transparent Electrode for High Efficient Semitransparent Top Cell[J]. Nano Energy, 2021, 84: 105934.
[55] Xiong J, Dai Z, Zhan S, et al. Multifunctional Passivation Strategy Based on Tetraoctylammonium Bromide for Efficient Inverted Perovskite Solar Cells[J]. Nano Energy, 2021, 84: 105882.
[56] Liu T, Chen K, Hu Q, et al. Inverted Perovskite Solar Cells: Progresses and Perspectives[J]. Advanced Energy Materials, 2016, 6(17): 1600457.
[57] Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.
[58] Vos A D. Detailed Balance Limit of the Efficiency of Tandem Solar Cells[J]. Journal of Physics D: Applied Physics, 1980, 13(5): 839-846.
[59] Geisz J F, FRANCE R M, SCHULTE K L, et al. Six-Junction III–V Solar Cells with 47.1% Conversion Efficiency under 143 Suns Concentration[J]. Nature Energy, 2020, 5(4): 326-335.
[60] Lin R, Xiao K, Qin Z, et al. Monolithic All-Perovskite Tandem Solar Cells with 24.8% Efficiency Exploiting Comproportionation to Suppress Sn(II) Oxidation in Precursor Ink[J]. Nature Energy, 2019, 4(10): 864-873.
[61] Liu Y, Chen Y. Integrated Perovskite/Bulk-Heterojunction Organic Solar Cells[J]. Advanced Materials, 2020, 32(3): 1805843.
[62] Han Q, Hsieh Y T, Meng L, et al. High-Performance Perovskite /Cu(In,Ga)Se2 Monolithic Tandem Solar Cells[J]. Science, 2018, 361(6405): 904-908.
[63] Al-Ashouri A, Kohnen E, Li B, et al. Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction[J]. Science, 2020, 370(6522): 1300-1309.
[64] Liu Q, Jiang Y, Jin K, et al. 18% Efficiency Organic Solar Cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[65] Zuo C, Ding L. Bulk Heterojunctions Push the Photoresponse of Perovskite Solar Cells to 970 nm[J]. Journal of Materials Chemistry A, 2015, 3(17): 9063-9066.
[66] Dong S, Liu Y, Hong Z, et al. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk- Heterojunction Solar Cells[J]. Nano Letters, 2017, 17(8): 5140-5147.
[67] Gao K, Zhu Z, Xu B, et al. Highly Efficient Porphyrin-Based Opv/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor[J]. Advanced Materials, 2017, 29(47): 1703980.
[68] Jiang K, Wei Q, Lai J Y L, et al. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells[J]. Joule, 2019, 3(12): 3020-3033.
[69] Wang C, Bai Y, Guo Q, et al. Enhancing Charge Transport in an Organic Photoactive Layer Via Vertical Component Engineering for Efficient Perovskite/Organic Integrated Solar Cells[J]. Nanoscale, 2019, 11(9): 4035-4043.
[70] Guo Q, Liu H, Shi Z, et al. Efficient Perovskite/Organic Integrated Solar Cells with Extended Photoresponse to 930 nm and Enhanced near-Infrared External Quantum Efficiency of over 50%[J]. Nanoscale, 2018, 10(7): 3245-3253.
[71] An Q, Zhang F, Zhang J, et al. Versatile Ternary Organic Solar Cells: A Critical Review[J]. Energy & Environmental Science, 2016, 9(2): 281-322.
[72] Chen W, Sun H, Hu Q, et al. High Short-Circuit Current Density Via Integrating the Perovskite and Ternary Organic Bulk Heterojunction[J]. ACS Energy Letters, 2019, 4(10): 2535-2536.
[73] Li C, Pan Y, Hu J, et al. Vertically Aligned 2D/3D Pb-Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells[J]. ACS Energy Letters, 2020, 5(5): 1386-1395.
[74] Zuo C, Ding L. Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells[J]. Advanced Energy Materials, 2017, 7(2): 1601193.
[75] Kim Y, Jung E H, Kim G, et al. Sequentially Fluorinated PTAA Polymers for Enhancing Voc of High-Performance Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(29): 1801668.
[76] Wang Y, Wang S, Chen X, et al. Largely Enhanced Voc and Stability in Perovskite Solar Cells with Modified Energy Match by Coupled 2D Interlayers[J]. Journal of Materials Chemistry A, 2018, 6(11): 4860-4867.
[77] Chiang C-H, Wu C-G. A Method for the Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor[J]. ACS Nano, 2018, 12(10): 10355-10364.
[78] Kim H D, Ohkita H. Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells[J]. Solar RRL, 2017, 1(6): 1700027.
[79] Yan W, Ye S, Li Y, et al. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells[J]. Advanced Energy Materials, 2016, 6(17): 1600474.
[80] Steirer K X, Ndione P F, Widjonarko N E, et al. Enhanced Efficiency in Plastic Solar Cells Via Energy Matched Solution Processed NiOx Interlayer[J]. Advanced Energy Materials, 2011, 1(5): 813-820.
[81] Zhu Z, Bai Y, Zhang T, et al. High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2014, 53(46): 12571-12575.
[82] Wang Y, Ju H, Mahmoudi T, et al. Cation-Size Mismatch and Interface Stabilization for Efficient NiOx-Based Inverted Perovskite Solar Cells with 21.9% Efficiency[J]. Nano Energy, 2021, 88: 106285.
[83] Zhou L, Lin Z, Ning Z, et al. Highly Efficient and Stable Planar Perovskite Solar Cells with Modulated Diffusion Passivation toward High Power Conversion Efficiency and Ultrahigh Fill Factor[J]. Solar RRL, 2019, 3(11): 1900293.
[84] He Q, Yao K, Wang X, et al. Room-Temperature and Solution- Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole- Transport Layers of Flexible Large-Area Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41887-41897.
[85] Chen W, Zhou Y, Wang L, et al. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell[J]. Advanced Materials, 2018, 30(20): 1800515.
[86] Bao H, Du M, Wang H, et al. Samarium-Doped Nickel Oxide for Superior Inverted Perovskite Solar Cells: Insight into Doping Effect for Electronic Applications[J]. Advanced Functional Materials, 2021, 31(34): 2102452.
[87] Jeng J-Y, Chiang Y-F, Lee M-H, et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[88] Yang D, Yang R, Priya S, et al. Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications[J]. Angewandte Chemie International Edition, 2019, 58(14): 4466-4483.
[89] Zhou W, Wen Z, Gao P. Less Is More: Dopant-Free Hole Transporting Materials for High-Efficiency Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(9): 1702512.
[90] Bi C, Wang Q, Shao Y, et al. Non-Wetting Surface-Driven High-Aspect- Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7747.
[91] Jung E D, Harit A K, Kim D H, et al. Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(30): 2002333.
[92] Wan L, Zhang W, Fu S, et al. Achieving over 21% Efficiency in Inverted Perovskite Solar Cells by Fluorinating a Dopant-Free Hole Transporting Material[J]. Journal of Materials Chemistry A, 2020, 8(14): 6517-6523.
[93] Sun X, Li Z, Yu X, et al. Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor[J]. Angewandte Chemie International Edition, 2021, 60(13): 7227-7233.
[94] Li B, Yang K, Liao Q, et al. Imide-Functionalized Triarylamine-Based Donor-Acceptor Polymers as Hole Transporting Layers for High-Performance Inverted Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(21): 2100332.
[95] Collins S D, Ran N, Heiber M C, et al. Small Is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells[J]. Advanced Energy Materials, 2017, 7(10): 1602242.
[96] Fan H, Zhu X. Development of Small-Molecule Materials for High-Performance Organic Solar Cells[J]. Science China Chemistry, 2015, 58(6): 922-936.
[97] Osedach T P, Andrew T L, Bulovic V. Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics[J]. Energy & Environmental Science, 2013, 6(3): 711-718.
[98] Labban A E, Chen H, Kirkus M, et al. Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement[J]. Advanced Energy Materials, 2016, 6(11): 1502101.
[99] Chen H, Fu W, Huang C, et al. Molecular Engineered Hole-Extraction Materials to Enable Dopant-Free, Efficient p-i-n Perovskite Solar Cell[J]. Advanced Energy Materials, 2017, 7(18): 1700012.
[100] Park S J, Jeon S, Lee I K, et al. Inverted Planar Perovskite Solar Cells with Dopant Free Hole Transporting Material: Lewis Base-Assisted Passivation and Reduced Charge Recombination[J]. Journal of Materials Chemistry A, 2017, 5(25): 13220-13227.
[101] Huang C, Fu W, Li C-Z, et al. Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2016, 138(8): 2528-2531.
[102] Reddy S S, Shin S, Aryal U K, et al. Highly Efficient Air-Stable/ Hysteresis Free Flexible Inverted-Type Planar Perovskite and Organic Solar Cells Employing a Small Molecular Organic Hole Transporting Material[J]. Nano Energy, 2017, 41: 10-17.
[103] Yang L, Cai F, Yan Y, et al. Conjugated Small Molecule for Efficient Hole Transport in High-Performance p-i-n Type Perovskite Solar Cells[J]. Advanced Functional Materials, 2017, 27(31): 1702613.
[104] Sun X, Xue Q, Zhu Z, et al. Fluoranthene-Based Dopant-Free Hole Transporting Materials for Efficient Perovskite Solar Cells[J]. Chemical Science, 2018, 9(10): 2698-2704.
[105] Shang R, Zhou Z, Nishioka H, et al. Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2018, 140(15): 5018-5022.
[106] Wang Y, Chen W, Wang L, et al. Dopant-Free Small-Molecule Hole- Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%[J]. Advanced Materials, 2019, 31(35): 1902781.
[107] Chen W, Wang Y, Liu B, et al. Engineering of Dendritic Dopant-Free Hole Transport Molecules: Enabling Ultrahigh Fill Factor in Perovskite Solar Cells with Optimized Dendron Construction[J]. Science China Chemistry, 2021, 64(1): 41-51.
[108] Mahmood K, Sarwar S, Mehran M T. Current Status of Electron Transport Layers in Perovskite Solar Cells: Materials and Properties[J]. RSC Advances, 2017, 7(28): 17044-17062.
[109] Fang R, Wu S, Chen W, et al.
[6,6]-Phenyl-C61-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells[J]. ACS Nano, 2018, 12(3): 2403-2414.
[110] Yan Y. Perovskite Solar Cells: High Voltage from Ordered Fullerenes[J]. Nature Energy, 2016, 1(1): 15007.
[111] Huo Y, Zhang H, Zhan X. Nonfullerene All-Small-Molecule Organic Solar Cells[J]. ACS Energy Letters, 2019, 4(6): 1241-1250.
[112] Zhang M, Zhan X. Nonfullerene n-Type Organic Semiconductors for Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(25): 1900860.
[113] Qin M, Cao J, Zhang T, et al. Fused-Ring Electron Acceptor ITIC-Th: A Novel Stabilizer for Halide Perovskite Precursor Solution[J]. Advanced Energy Materials, 2018, 8(18): 1703399.
[114] Zhao D, Zhu Z, Kuo M-Y, et al. Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2016, 55(31): 8999-9003.
[115] Xue Q, Chen G, Liu M, et al. Improving Film Formation and Photovoltage of Highly Efficient Inverted-Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers[J]. Advanced Energy Materials, 2016, 6(5): 1502021.
[116] Gu P-Y, Wang N, Wang C, et al. Pushing up the Efficiency of Planar Perovskite Solar Cells to 18.2% with Organic Small Molecules as the Electron Transport Layer[J]. Journal of Materials Chemistry A, 2017, 5(16): 7339-7344.
[117] Castro E, Sisto T J, Romero E L, et al. Cove-Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2017, 56(46): 14648-14652.
[118] Luo Z, Wu F, Zhang T, et al. Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability[J]. Angewandte Chemie International Edition, 2019, 58(25): 8520-8525.
[119] Sun C, Wu Z, Yip H-L, et al. Amino-Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High-Performance Planar-Heterojunction Perovskite Solar Cells[J]. Advanced Energy Materials, 2016, 6(5): 1501534.
[120] Kim H I, Kim M-J, Choi K, et al. Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel N-Based Polymer as the Electron Transport Layer[J]. Advanced Energy Materials, 2018, 8(16): 1702872.
[121] Shi Y, Chen W, Wu Z, et al. Imide-Functionalized Acceptor–Acceptor Copolymers as Efficient Electron Transport Layers for High-Performance Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(27): 13754-13762.
[122] Chen W, Shi Y, Wang Y, et al. N-Type Conjugated Polymer as Efficient Electron Transport Layer for Planar Inverted Perovskite Solar Cells with Power Conversion Efficiency of 20.86%[J]. Nano Energy, 2020, 68: 104363.
[123] Jung S K, Heo J H, Oh B M, et al. Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 30(13): 1905951.
[124] Li F, Deng X, Qi F, et al. Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency[J]. Journal of the American Chemical Society, 2020, 142(47): 20134-20142.
[125] Noh J H, Im S H, Heo J H, et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells[J]. Nano Letter, 2013, 13(4): 1764-1769.
[126] Niu G, Guo X, Wang L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.
[127] Hwang I, Jeong I, Lee J, et al. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17330-17336.
[128] Lee J W, Bae S H, De Marco N, et al. The Role of Grain Boundaries in Perovskite Solar Cells[J]. Materials Today Energy, 2018, 7: 149-160.
[129] Leguy A M A, Hu Y, Campoy-Quiles M, et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells[J]. Chemistry of Materials, 2015, 27(9): 3397-3407.
[130] Lee J W, Park N G. Chemical Approaches for Stabilizing Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 10(1): 1903249.
[131] Zhang S, Liu Z, Zhang W, et al. Barrier Designs in Perovskite Solar Cells for Long-Term Stability[J]. Advanced Energy Materials, 2020, 10(35): 2001610.
[132] Zhou Y, Hu J, Wu Y, et al. Review on Methods for Improving the Thermal and Ambient Stability of Perovskite Solar Cells[J]. Journal of Photonics for Energy, 2019, 9(4): 040901.
[133] Saliba M, Matsui T, Seo J Y, et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997.
[134] Matsui T, Yokoyma T, Negami T, et al. Effect of Rubidium for Thermal Stability of Triple-Cation Perovskite Solar Cells[J]. Chemistry Letters, 2018, 47(6): 814-816.
[135] Wang R, Xue J, Meng L, et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells[J]. Joule, 2019, 3(6): 1464-1477.
[136] ChoiI K, Lee J, Choi H, et al. Heat Dissipation Effects on the Stability of Planar Perovskite Solar Cells[J]. Energy & Environmental Science, 2020, 13(12): 5059-5067.
[137] Prasanna R, Leijtens T, Dunfield S P, et al. Design of Low Bandgap Tin-Lead Halide Perovskite Solar Cells to Achieve Thermal, Atmospheric and Operational Stability[J]. Nature Energy, 2019, 4(11): 939-947.
[138] Bella F, Griffini G, Correa-Baena J P, et al. Improving Efficiency and Stability of Perovskite Solar Cells with Photocurable Fluoropolymers[J]. Science, 2016, 354(6309): 203-206.
[139] Deng K, Chen Q, Shen Y, et al. Improving Uv Stability of Perovskite Solar Cells without Sacrificing Efficiency through Light Trapping Regulated Spectral Modification[J]. Science Bulletin, 2021, 66(23): 2362-2368.
[140] Leijtens T, Eperon G E, Pathak S, et al. Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells[J]. Nature Communications, 2013, 4(1): 2885.
[141] Yuan Y, Wang Q, Shao Y, et al. Electric-Field-Driven Reversible Conversion between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures[J]. Advanced Energy Materials, 2016, 6(2): 1501803.
[142] Wang L, Zhou H, Hu J, et al. A Eu(3+)-Eu(2+) Ion Redox Shuttle Imparts Operational Durability to Pb-I Perovskite Solar Cells[J]. Science, 2019, 363(6424): 265-270.
[143] Mizusaki J, Arai K, Fueki K. Ionic Conduction of the Perovskite- Type Halides[J]. Solid State Ionics, 1983, 11(3): 203-211.
[144] Yuan Y, Huang J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293.
[145] Eames C, Frost J M, Barnes P R F, et al. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7497.
[146] Xia G, Huang B, Zhang Y, et al. Nanoscale Insights into Photovoltaic Hysteresis in Triple-Cation Mixed-Halide Perovskite: Resolving the Role of Polarization and Ionic Migration[J]. Advanced Materials, 2019, 31(36): 1902870.
[147] Snaith H J, Abate A, Ball J M, et al. Anomalous Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1511-1515.
[148] Luo D, Su R, Zhang W, et al. Minimizing Non-Radiative Recombination Losses in Perovskite Solar Cells[J]. Nature Reviews Materials, 2019, 5(1): 44-60.
[149] Cowan S R, Roy A, Heeger A J. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells[J]. Physical Review B, 2010, 82(24): 245207.
[150] Nazerdeylami S. Dominant Recombination Mechanism in Perovskite Solar Cells: A Theoretical Study[J]. Solar Energy, 2020, 206: 27-34.
[151] Liu Z, Niu S, Wang N. Light Illumination Intensity Dependence of Photovoltaic Parameter in Polymer Solar Cells with Ammonium Heptamolybdate as Hole Extraction Layer[J]. Journal of Colloid and Interface Science, 2018, 509: 171-177.
[152] Poplavskyy D, Nelson J. Nondispersive Hole Transport in Amorphous Films of Methoxy-Spirofluorene-Arylamine Organic Compound[J]. Journal of Applied Physics, 2003, 93(1): 341-346.
[153] Chen J, Park N-G. Causes and Solutions of Recombination in Perovskite Solar Cells[J]. Advanced Materials, 2019, 31(47): 1803019.
[154] Zuo L, Dong S, De Marco N, et al. Morphology Evolution of High Efficiency Perovskite Solar Cells Via Vapor Induced Intermediate Phases[J]. Journal of the American Chemical Society, 2016, 138(48): 15710-15716.
[155] Mohd Yusoff A R B, Vasilopoulou M, Georgiadou D G, et al. Passivation and Process Engineering Approaches of Halide Perovskite Films for High Efficiency and Stability Perovskite Solar Cells[J]. Energy & Environmental Science, 2021, 14(5): 2906-2953.
[156] Chiang C-H, Wu C-G. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells[J]. ChemSusChem, 2016, 9(18): 2666-2672.
[157] Li H, Wu G, Li W, et al. Additive Engineering to Grow Micron-Sized Grains for Stable High Efficiency Perovskite Solar Cells[J]. Advanced Science, 2019, 6(18): 1901241.
[158] Wang R, Xue J, Wang K, et al. Constructive Molecular Configurations for Surface-Defect Passivation of Perovskite Photovoltaics[J]. Science, 2019, 366(6472): 1509-1513.
[159] Wu T, Wang Y, Li X, et al. Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules[J]. Advanced Energy Materials, 2019, 9(17): 1803766.
[160] Cardona C M, Li W, Kaifer A E, et al. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications[J]. Advanced Materials, 2011, 23(20): 2367-2371.
[161] Li S, He B, Xu J, et al. Highly Efficient Inverted Perovskite Solar Cells Incorporating P3CT-Rb as a Hole Transport Layer to Achieve a Large Open Circuit Voltage of 1.144 V[J]. Nanoscale, 2020, 12(6): 3686-3691.
[162] Xiong S, Dai Y, Yang J, et al. Surface Charge-Transfer Doping for Highly Efficient Perovskite Solar Cells[J]. Nano Energy, 2021, 79:105505.
[163] Choi H, Mai C-K, Kim H-B, et al. Conjugated Polyelectrolyte Hole Transport Layer for Inverted-Type Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7348.
[164] Liu Y, Renna L A, Page Z A, et al. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions[J]. Advanced Energy Materials, 2016, 6(20): 1600664.
[165] Li X, Liu X, Wang X, et al. Polyelectrolyte Based Hole-Transporting Materials for High Performance Solution Processed Planar Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3(29): 15024-15029.
[166] Wang D, Ye T, Zhang Y. Recent Advances of Non-Fullerene Organic Electron Transport Materials in Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(40): 20819-20848.
[167] Li X, Wang Y-C, Zhu L, et al. Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31357-31361.
[168] Liang M, Chen J. Arylamine Organic Dyes for Dye-Sensitized Solar Cells[J]. Chemical Society Reviews, 2013, 42(8): 3453-3488.
[169] Ulman A. Formation and Structure of Self-Assembled Monolayers[J]. Chemical Reviews, 1996, 96(4): 1533-1554.
[170] Choi K, Choi H, Min J, et al. A Short Review on Interface Engineering of Perovskite Solar Cells: A Self-Assembled Monolayer and Its Role[J]. Solar RRL, 2020, 4(2): 1900251.
[171] Xie J, Yan K, Zhu H, et al. Identifying the Functional Groups Effect on Passivating Perovskite Solar Cells[J]. Science Bulletin, 2020, 65(20): 1726-1734.
[172] Guo X, Liao Q, Manley E F, et al. Materials Design Via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors[J]. Chemistry of Materials, 2016, 28(7): 2449-2460.
[173] OEHZELT M, KOCH N, HEIMEL G. Organic Semiconductor Density of States Controls the Energy Level Alignment at Electrode Interfaces[J]. Nature Communications, 2014, 5(1): 4174.
[174] Kong W, Li W, Liu C, et al. Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells[J]. ACS Nano, 2019, 13(2): 1625-1634.
[175] Lin X, Cui D, Luo X, et al. Efficiency Progress of Inverted Perovskite Solar Cells[J]. Energy & Environmental Science, 2020, 13(11): 3823-3847.
[176] Ali J, Gao P, Zhou G, et al. Elucidating the Roles of Hole Transport Layers in p-i-n Perovskite Solar Cells[J]. Advanced Electronic Materials, 2020, 6(12): 2000149.
[177] Jiang Q, Chu Z, Wang P, et al. Planar-Structure Perovskite Solar Cells with Efficiency Beyond 21%[J]. Advanced Materials, 2017, 29(46): 1703852.
[178] Singh R, Shukla V K. ITIC-Based Bulk Heterojunction Perovskite Film Boosting the Power Conversion Efficiency and Stability of the Perovskite Solar Cell[J]. Solar Energy, 2019, 178: 90-97.
[179] Zhao S, Xie J, Cheng G, et al. General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability[J]. Small, 2018, 14(50): e1803350.
[180] Chen B, Yang M, Priya S, et al. Origin of J–V Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917.
[181] Kang D-H, Park N-G. On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis[J]. Advanced Materials, 2019, 31(34): 1805214.
[182] Liu P, Wang W, Liu S, et al. Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(13): 1803017.
[183] Riedel I, Parisi J, Dyakonov V, et al. Effect of Temperature and Illumination on the Electrical Characteristics of Polymer-Fullerene Bulk- Heterojunction Solar Cells[J]. Advanced Functional Materials, 2004, 14(1): 38-44.
[184] Wetzelaer G J, Scheepers M, Sempere A M, et al. Trap-Assisted Non-Radiative Recombination in Organic-Inorganic Perovskite Solar Cells[J]. Advanced Materials, 2015, 27(11): 1837-1841.
[185] Wang K, Liu J, Yin J, et al. Defect Passivation in Perovskite Solar Cells by Cyano-Based π-Conjugated Molecules for Improved Performance and Stability[J]. Advanced Functional Materials, 2020, 30(35): 2002861.
[186] Cao Y, Li Y, Morrissey T, et al. Dopant-Free Molecular Hole Transport Material That Mediates a 20% Power Conversion Efficiency in a Perovskite Solar Cell[J]. Energy & Environmental Science, 2019, 12(12): 3502-3507.
[187] Jiang K, Wang J, Wu F, et al. Dopant-Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(16): 1908011.
[188] Yin X, Zhou J, Song Z, et al. Dithieno
[3,2-b:2′, 3′-d]Pyrrol-Cored Hole Transport Material Enabling over 21% Efficiency Dopant-Free Perovskite Solar Cells[J]. Advanced Functional Materials, 2019, 29(38): 1904300.
[189] Zhang J, Sun Q, Chen Q, et al. Dibenzo[b,d]Thiophene-Cored Hole- Transport Material with Passivation Effect Enabling the High-Efficiency Planar p-i-n Perovskite Solar Cells with 83% Fill Factor[J]. Solar RRL, 2020, 4(3): 1900421.
[190] You G, Zhuang Q, Wang L, et al. Dopant-Free, Donor-Acceptor-Type Polymeric Hole-Transporting Materials for the Perovskite Solar Cells with Power Conversion Efficiencies over 20%[J]. Advanced Energy Materials, 2020, 10(5): 1903146.
[191] Lu H, He B, Ji Y, et al. Dopant-Free Hole Transport Materials Processed with Green Solvent for Efficient Perovskite Solar Cells[J]. Chemical Engineering Journal, 2020, 385: 123976.
[192] Lee J, Malekshahi Byranvand M, Kang G, et al. Green-Solvent- Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(35): 12175-12181.
[193] Lee J, Kim G-W, Kim M, et al. Nonaromatic Green-Solvent-Processable, Dopant-Free, and Lead-Capturable Hole Transport Polymers in Perovskite Solar Cells with High Efficiency[J]. Advanced Energy Materials, 2020, 10(8): 1902662.
[194] Gardner K L, Tait J G, Merckx T, et al. Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics[J]. Advanced Energy Materials, 2016, 6(14): 1600386.
[195] Bu T, Wu L, Liu X, et al. Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells[J]. Advanced Energy Materials, 2017, 7(20): 1700576.
[196] Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(21): 1800177.
[197] Mishra A, Fischer M K R, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules[J]. Angewandte Chemie International Edition, 2009, 48(14): 2474-2499.
[198] Lee C-P, Li C-T, Ho K-C. Use of Organic Materials in Dye-Sensitized Solar Cells[J]. Materials Today, 2017, 20(5): 267-283.
[199] Zhou N, Prabakaran K, Lee B, et al. Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(13): 4414-4423.
[200] Ok S A, Jo B, Somasundaram S, et al. Management of Transition Dipoles in Organic Hole-Transporting Materials under Solar Irradiation for Perovskite Solar Cells[J]. Nature Communication, 2018, 9(1): 4537.
[201] Hagfeldt A, Boschloo G, Sun L, et al. Dye-Sensitized Solar Cells[J]. Chemical Reviews, 2010, 110(11): 6595-6663.
[202] Li X, Chen C-C, Cai M, et al. Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with -COOH Functional Group[J]. Advanced Energy Materials, 2018, 8(20): 1800715.
[203] Li L, Wu Y, Li E, et al. Self-Assembled Naphthalimide Derivatives as an Efficient and Low-Cost Electron Extraction Layer for n-i-p Perovskite Solar Cells[J]. Chemical Communications, 2019, 55(88): 13239-13242.
[204] BERLIN A, ZOTTI G, SCHIAVON G, et al. Adsorption of Carboxyl- Terminated Dithiophene and Terthiophene Molecules on ITO Electrodes and Their Electrochemical Coupling to Polymer Layers. The Influence of Molecular Geometry[J]. Journal of the American Chemical Society, 1998, 120(51): 13453-13460.
[205] Chiykowski V A, Cao Y, Tan H, et al. Precise Control of Thermal and Redox Properties of Organic Hole-Transport Materials[J]. Angewandte Chemie International Edition, 2018, 57(47): 15529-15533.
[206] Kranthiraja K, Gunasekar K, Kim H, et al. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers[J]. Advanced Materials, 2017, 29(23): 1700183.
[207] Qin P, Paek S, Dar M I, et al. Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material[J]. Journal of the American Chemical Society, 2014, 136(24): 8516-8519.
[208] Petrus M L, Bein T, Dingemans T J, et al. A Low Cost Azomethine- Based Hole Transporting Material for Perovskite Photovoltaics[J]. Journal of Materials Chemistry A, 2015, 3(23): 12159-12162.
[209] Murakami T N, Koumura N. Development of Next-Generation Organic-Based Solar Cells: Studies on Dye-Sensitized and Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(23): 1802967.
[210] Wang X, Zhang J, Yu S, et al. Lowering Molecular Symmetry to Improve the Morphological Properties of the Hole-Transport Layer for Stable Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2018, 57(38): 12529-12533.
[211] Liao Q, Wang Y, Uddin M A, et al. Drastic Effects of Fluorination on Backbone Conformation of Head-to-Head Bithiophene-Based Polymer Semiconductors[J]. ACS Macro Letters, 2018, 7(5): 519-524.
[212] Rakstys K, Abate A, Dar M I, et al. Triazatruxene-Based Hole- Transporting Materials for Highly Efficient Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(51): 16172-16178.
[213] Magomedov A, Al-Ashouri A, Kasparavicius E, et al. Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2018, 8(32): 1801892.
[214] Jiang E, Ai Y, Yan J, et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36727-36734.
[215] Aydin E, De Bastiani M, De Wolf S. Defect and Contact Passivation for Perovskite Solar Cells[J]. Advanced Materials, 2019, 31(25): e1900428.
[216] Gao F, Zhao Y, Zhang X, et al. Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 10(13): 1902650.
[217] Ono L K, Liu S, Qi Y. Reducing Detrimental Defects for High- Performance Metal Halide Perovskite Solar Cell[J]. Angewandte Chemie International Edition, 2020, 59(17): 6676-6698.
[218] Xiao Q, Tian J, Xue Q, et al. Dopant-Free Squaraine-Based Polymeric Hole-Transporting Materials with Comprehensive Passivation Effects for Efficient All-Inorganic Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2019, 58(49): 17724-17730.
[219] Wang Q, Mosconi E, Wolff C, et al. Rationalizing the Molecular Design of Hole-Selective Contacts to Improve Charge Extraction in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(28): 1900990.
[220] Hu J, Xu T, Cheng Y. Nmr Insights into Dendrimer-Based Host–Guest Systems[J]. Chemical Reviews, 2012, 112(7): 3856-3891.
[221] Santo M, Fox M A. Hydrogen Bonding Interactions between Starburst Dendrimers and Several Molecules of Biological Interest[J]. Journal of Physical Organic Chemistry, 1999, 12(4): 293-307.
[222] Wang Z, Cui Y, Dan-Oh Y, et al. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid[J]. Journal of Physical Chemistry C, 2007, 111(19): 7224-7230.
[223] Wu T, Wang Y, Dai Z, et al. Efficient and Stable CsPbI3 Solar Cells Via Regulating Lattice Distortion with Surface Organic Terminal Groups[J]. Advanced Materials, 2019, 31(24): 1900605.
[224] Zhao Y, Wei J, Li H, et al. A Polymer Scaffold for Self-Healing Perovskite Solar Cells[J]. Nature Communications, 2016, 7(1): 10228.
[225] Schilinsky P, Waldauf C, Brabec C J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.
[226] Azmi R, Oh S H, Jang S Y. High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions[J]. ACS Energy Letters, 2016, 1(1): 100-106.
[227] Mandoc M M, Veurman W, Koster L J A, et al. Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells[J]. Advanced Functional Materials, 2007, 17(13): 2167-2173.
[228] Tu B, Wang Y, Chen W, et al. Side-Chain Engineering of Donor- Acceptor Conjugated Small Molecules as Dopant-Free Hole-Transport Materials for Efficient Normal Planar Perovskite Solar Cells[J]. Applied Materials & Interfaces, 2019, 11(51): 48556-48563.
[229] Park N G, Gratzel M, Miyasaka T, et al. Towards Stable and Commercially Available Perovskite Solar Cells[J]. Nature Energy, 2016, 1(11): 16152.
[230] Kim S Y, Cho S J, Byeon S E, et al. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells[J]. Advanced Energy Materials, 2020, 10(44): 2002606.
[231] Halik M, Hirsch A. The Potential of Molecular Self-Assembled Monolayers in Organic Electronic Devices[J]. Advanced Materials, 2011, 23(22-23): 2689-2695.
[232] Casalini S, Bortolotti C A, Leonardi F, et al. Self-Assembled Monolayers in Organic Electronics[J]. Chemical Society Reviews, 2017, 46(1): 40-71.
[233] Ali F, Roldán-Carmona C, Sohail M, et al. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability[J]. Advanced Energy Materials, 2020, 10(48): 2002989.
[234] Yang Q, Wang X, Yu S, et al. Solvent-Actuated Self-Assembly of Amphiphilic Hole-Transporting Polymer Enables Bottom-Surface Passivation of Perovskite Film for Efficient Photovoltaics[J]. Advanced Energy Materials, 2021, 11(17): 2100493.
[235] Chang C-Y, Huang H-H, Tsai H, et al. Facile Fabrication of Self- Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells[J]. Advanced Science, 2021, 8(5): 2002718.
[236] Wolff C M, Canil L, Rehermann C, et al. Perfluorinated Self- Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells[J]. ACS Nano, 2020, 14(2): 1445-1456.
[237] Li E, Bi E, Wu Y, et al. Synergistic Coassembly of Highly Wettable and Uniform Hole-Extraction Monolayers for Scaling-up Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 30(7): 1909509.
[238] Al-Ashouri A, Magomedov A, Roß M, et al. Conformal Monolayer Contacts with Lossless Interfaces for Perovskite Single Junction and Monolithic Tandem Solar Cells[J]. Energy & Environmental Science, 2019, 12(11): 3356-3369.
[239] Chen C, Cheng M, Liu P, et al. Application of Benzodithiophene Based A-D-A Structured Materials in Efficient Perovskite Solar Cells and Organic Solar Cell[J]. Nano Energy, 2016, 23: 40-49.
[240] Aktas E, Phung N, Köbler H, et al. Understanding the Perovskite/ Self-Assembled Selective Contact Interface for Ultra Stable and Highly Efficient p-i-n Perovskite Solar Cells[J]. Energy & Environmental Science, 2021, 14(7): 3976-3985.
[241] Li E, Liu C, Lin H, et al. Bonding Strength Regulates Anchoring-Based Self-Assembly Monolayers for Efficient and Stable Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(35): 2103847.
[242] Liu H, Li Z, Zhao D. Rhodanine-Based Nonfullerene Acceptors for Organic Solar Cells[J]. Science China-Materials, 2019, 62(11): 1574-1596.
[243] Pujari S P, Scheres L, Marcelis A T M, et al. Covalent Surface Modification of Oxide Surfaces[J]. Angewandte Chemie International Edition, 2014, 53(25): 6322-6356.
[244] Choi, J, Sakurai K, Kato T. Observation of Self-Assembled Monolayers on Diamond-Like Carbon Films: Agglomeration of Self-Assembled FDTS Molecules[J]. Surface and Interfaces Analysis, 2010, 42(6-7): 1373-1376.
[245] Li W, Liu H, iu C, et al. Approaching Optimal Hole Transport Layers by an Organic Monomolecular Strategy for Efficient Inverted Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(32): 16560-16569.
[246] Lange I, Reiter S, Patzel M, et al. Tuning the Work Function of Polar Zinc Oxide Surfaces Using Modified Phosphonic Acid Self Assembled Monolayers[J]. Advanced Functional Materials, 2014, 24(44): 7014-7024.
[247] Yao Z, Zhang F, Guo Y, et al. Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells[J]. Journal of the American Chemical Society, 2020, 142(41): 17681-17692.
[248] Du M, Zhu X, Wang L, et al. High-Pressure Nitrogen-Extraction and Effective Passivation to Attain Highest Large-Area Perovskite Solar Module Efficiency[J]. Advanced Materials, 2020, 32(47): e2004979.
[249] Chen X, Zhang Z, Ding Z, et al. Diketopyrrolopyrrole-Based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices[J]. Angewandte Chemie International Edition, 2016, 55(35): 10376-10380.
[250] Jiang Q, Chu Z, Wang P, et al. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%[J]. Advanced Materials, 2017, 29(46):1703852.
[251] Luo C, Zhao Y, Wang X, et al. Self-Induced Type-I Band Alignment at Surface Grain Boundaries for Highly Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2021, 33(40):2103231.
[252] Azimi R, Hadmojo W T, Sinaga S, et al. High Efficiency Low Temperature ZnO Based Perovskite Solar Cells Based on Highly Polar, Nonwetting Self-Assembled Molecular Layers[J]. Advanced Energy Materials, 2018, 8(5): 1701683.
[253] Stolterfoht M, Wolff C M, Marquez J A, et al. Visualization and Suppression of Interfacial Recombination for High-Efficiency Large-Area Pin Perovskite Solar Cells[J]. Nature Energy, 2018, 3(10): 847-854.
[254] Cheng H, Li Y, Zhang M, et al. Self-Assembled Ionic Liquid for Highly Efficient Electron Transport Layer-Free Perovskite Solar Cells[J]. ChemSusChem, 2020, 13(10): 2779-2785.
[255] Huang J, Yang J, Li D, et al. A Low-Cost and Green Solvent Processable Hole Transport Material Enabled by a Traditional Bidentate Ligand for Highly Efficient Inverted Perovskite Solar Cells[J]. Journal of Materials Chemistry C, 2021, 9(28): 8930-8938.
[256] Meng F, Wang Y, Wen Y, et al. Dopant-Free and Green-Solvent- Processable Hole-Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells[J]. Solar RRL, 2020, 4(10): 2000327.
[257] Cho A-N, Park N G. Impact of Interfacial Layers in Perovskite Solar Cell[J]. ChemSusChem, 2017, 10(19): 3687-3704.
[258] Castro-Méndez A-F, Hidalgo J, Correa-Baena J-P. The Role of Grain Boundaries in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(38): 1901489.
[259] Lefebvre C, Rubez G, Khartabil H, et al. Accurately Extracting the Signature of Intermolecular Interactions Present in the NCI Plot of the Reduced Density Gradient Versus Electron Density[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17928-17936.
[260] Qian F, Yuan S, Cai Y, et al. Novel Surface Passivation for Stable FA0.85MA0.15PbI3 Perovskite Solar Cells with 21.6% Efficiency[J]. Solar RRL, 2019, 3(7): 1900072.
[260] Metrangolo P, Canil L, Abate A, et al. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion[J]. Angewandte Chemie International Edition, 2021, 61(11): e202114793.
[262] Más-Montoya M, Janssen R A J. The Effect of H- and J-Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene- Pyridine-DPP Molecules for Bulk-Heterojunction Solar Cells[J]. Advanced Functional Materials, 2017, 27(16): 1605779.
修改评论