中文版 | English
题名

METAL NANOMATERIALS: SYNTHESIS, DESIGN, AND APPLICATIONS

姓名
姓名拼音
LI Mingrui
学号
11654004
学位类型
博士
学位专业
化学
导师
权泽卫
导师单位
化学系
外机构导师
孙玉刚
外机构导师单位
天普大学
论文答辩日期
2022-03-02
论文提交日期
2022-07-27
学位授予单位
天普大学
学位授予地点
美国
摘要

As an important part of the periodic table, metal elements have attracted widespread attention due to their special physical and chemical properties, as well as effective functionalities. Many metals at the nanoscale level exhibit a wide array of applications, ranging from catalysis to photonics, electronics, energy conversion/storage, and medicine. To obtain a more effective functionality in application, it is indispensable to synthesize uniform metal nanoparticles with well-defined size, morphology, composition, and crystal structures. In this dissertation, we will demonstrate high-boiling point solvent method for synthesizing metal nanocrystals, ranging from single metal nanocrystals (e.g., iridium (Ir), ruthenium (Ru), germanium (Ge), bismuth (Bi)) to binary metal nanocrystals (e.g., Sn-Ge), and ternary intermetallic compounds (e.g., Pt1-xPdxBi). By varying different halogen ions, we can get different morphologies of metal nanocrystals. We will further study the catalytic effect of Pd metal nanocrystals supported on silicon spheres and realize the hydrodeoxygenation reaction of vanillin under mild conditions.
First, we used bismuth as an example to study the shape-controlled synthesis of metal nanocrystals by adjusting the injection temperature and the added halide ions (e.g., Cl-, Br-). Our findings indicated that due to the different electronegativities, halide ions are selectively adsorbed on specific crystal planes during the growth of Bi NCs, leading to different morphologies. Then we proposed a tungsten hexacarbonyl (W(CO)6)-assisted reduction strategy for obtaining uniform metal nanoparticles (e.g., Ir, Ru, Ge, Bi) of different metal salts. This strategy was extended to the synthesis of uniform binary metal (e.g., Sn-Ge) nanoparticles, which we can get tunable bandgap (0.51 eV to 0.72 eV) based on the controlled reaction of Ge2+ precursor solution with uniform tin (Sn) nanocrystals (NCs) as the template. Next, we realized the synthesis of intermetallic Pt1-xPdxBi nanoplates with controllable compositions, including Pt0.5Pb0.5Bi, Pt0.25Pd0.75Bi, and Pt0.75Pd0.25Bi via the sequential complexation-reduction-sorting method. Furthermore, we used palladium (Pd) metal nanoparticles (NPs) as a photocatalyst to trigger the hydrodeoxygenation reaction of vanillin. We demonstrated a model to disperse free-standing Pd NP on dielectric silica nanospheres (SiOx NSs). The spherical shape of SiOx can cause scattering resonance, thereby enhancing the local electric field on or near the surface to enhance light absorption of Pd NPs, further realizing a more effective catalyze on chemical reactions. We found that the adsorption of H2 on Pd is too strong to support the reaction effectively, but light absorption can reduce the "poisoning effect" by weakening the adsorption of hydrogen on Pd surface. Overall, we use innovative strategies to effectively synthesize a variety of high-quality metal nanomaterials. Our work shows that the Pd-NP/SiOx-NS composite nanostructure using dielectric SiOx as an optical nanoantenna is a promising photocatalyst that can drive photonic chemical conversion with high efficiency.

关键词
其他关键词
语种
英语
培养类别
联合培养
入学年份
2016
学位授予年份
2022-05
参考文献列表

1.6. References1. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem., Int. Ed., 2009, 48, 60-103.2. Y. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia and H. Zhang, Adv. Mater., 2017, 29, 1605997.3. X. Zhao, Q. Di, M. Li, Q. Yang, Z. Zhang, X. Guo, X. Fan, K. Deng, W. Chen, J. Zhang, J. Fang and Z. Quan, Chem. Mater., 2019, 31, 4325-4329.4. Y. Xia, X. Xia and H. C. Peng, J. Am. Chem. Soc., 2015, 137, 7947-7966.5. T.-H. Yang, K. D. Gilroy and Y. Xia, Chem. Sci., 2017, 8, 6730-6749.6. Z. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai and H. Zhu, ACS Catal., 2016, 6, 6255-6264.7. X. Zhang, J. Tang, Q. Zhang, Q. Liu, Y. Li, L. Chen, C. Wang and L. Ma, Catal. Today, 2019, 319, 41-47.8. C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander and N. J. Halas, Nano Lett., 2016, 16, 6677-6682.9. Y. Sun and Z. Tang, MRS Bull., 2020, 45, 20-25.2610. H. M. Al-Saidi, A. A. El-Bindary, A. Z. El-Sonbati and M. A. Abdel-Fadeel, RSC Adv., 2016, 6, 21210-21218.11. Y. Leng, L. Fu, L. Ye, B. Li, X. Xu, X. Xing, J. He, Y. Song, C. Leng, Y. Guo, X. Ji and Z. Lu, Sci. Rep., 2016, 6, 28900.12. R. Gill, M. Zayats and I. Willner, Angew. Chem., Int. Ed., 2008, 47, 7602-7625.13. P. J. Santos, P. A. Gabrys, L. Z. Zornberg, M. S. Lee and R. J. Macfarlane, Nature, 2021, 591, 586-591.14. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683.15. N. Zhang, Q. Shao, Y. Pi, J. Guo and X. Huang, Chem. Mater., 2017, 29, 5009-5015.16. N. Hussain, T. Liang, Q. Zhang, T. Anwar, Y. Huang, J. Lang, K. Huang and H. Wu, Small, 2017, 13 1701349.17. Z. Quan and J. Fang, Nano Today, 2010, 5, 390-411.18. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray and W. Heiss, ACS Nano, 2015, 9, 1012-1057.19. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang and T. Hyeon, Nat. Mater., 2004, 3, 891-895.2720. X. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. Zhang and J. A. Rogers, Adv. Mater. Interfaces, 2018, 5, 1800284.21. P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem., Int. Ed., 2008, 47, 2930-2946.22. B. Sandoval, Compr. Rev. Food Sci. F, 2009, 8, 375-393.23. Y. Xia, K. D. Gilroy, H.-C. Peng and X. Xia, Angew. Chem., Int. Ed., 2017, 56, 60-95.24. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, Molecules, 2019, 25, 112-126.25. S. T. Yang, L. Cao, P. G. Luo, F. Lu, X. Wang, H. Wang, M. J. Meziani, Y. Liu, G. Qi and Y. P. Sun, J. Am. Chem. Soc., 2009, 131, 11308-11309.26. R. Oszwałdowski, D. Abramavicius and S. Mukamel, J. Phys. Condens. Matter., 2008, 20, 045206.27. S. Stewart, Q. Wei and Y. Sun, Chem. Sci., 2021, 12, 1227-1239.28. R. Zhang, J. Bao, Y. Wang and C. F. Sun, Chem. Sci., 2018, 9, 6193-6198.29. L. V. Besteiro, X.-T. Kong, Z. Wang, G. Hartland and A. O. Govorov, ACS Photon., 2017, 4, 2759-2781.30. D. Aerts, Front. Psychol., 2014, 5, 554.31. L. Yin, Y. Wang, G. Pang, Y. Koltypin and A. Gedanken, J. Colloid Interface Sci., 2002, 246, 78-84.2832. M. Kopciuszyński, P. Dyniec, M. Krawiec, M. Jałochowski and R. Zdyb, Appl. Surf. Sci., 2015, 331, 512-518.33. H. Zhang, M. Jin and Y. Xia, Angew. Chem., Int. Ed., 2012, 51, 7656-7673.34. Q. Yuan and X. Wang, Nanoscale, 2010, 2, 2328-2335.35. W. Zang, G. Li, L. Wang and X. Zhang, Catal. Sci. Technol., 2015, 5, 2532-2553.36. Z. Liu, J. Qi, M. Liu, S. Zhang, Q. Fan, H. Liu, K. Liu, H. Zheng, Y. Yin and C. Gao, Angew. Chem., Int. Ed., 2018, 57, 11678-11682.37. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847– 4854.38. S. Wu, M. Li and Y. Sun, Angew. Chem., Int. Ed., 2019, 58, 8987-8995.39. C. B. Whitehead, S. Özkar and R. G. Finke, Chem. Mater., 2019, 31, 7116-7132.40. Murielle A. Watzky and R. G. Finke, J. Am. Chem. Soc., 1997, 119, 10382-10400.41. A. R. Tao, S. Habas and P. Yang, Small, 2008, 4, 310-325.42. S. Ghosh and L. Manna, Chem. Rev., 2018, 118, 7804-7864.43. S. E. Lohse, N. D. Burrows, L. Scarabelli, L. M. Liz-Marzán and C. J. Murphy, Chem. Mater., 2013, 26, 34-43.44. L. Pastero, D. Aquilano and M. Moret, Cryst. Growth Des., 2012, 12, 2306-2314.45. A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak and A. G. Kanaras, Chem. Rev., 2019, 119, 4819-4880.2946. Akhilesh Rai, Amit Singh, Absar Ahmad and M. Sastry, Langmuir, 2006, 22, 736-741.47. P. M. Treichel, Synth. React. Inorg. M., 1979, 9, 507-508.48. Y. Gao, Y. Zhou and R. Chandrawati, ACS Appl. Nano Mater., 2019, 3, 1-21.49. S. Shrivastava and D. Dash, J. Nanotechnol., 2009, 2009, 1-14.50. D. Sharma, S. Kanchi, K. Bisetty and V. N. Nuthalapati, Adv. Envir. Anal., 2016, 1, 1-34.51. N. M. Noah and S.-J. Young, J. Nanomater., 2020, 2020, 1-20.52. R. S. Geonmonond, A. Silva and P. H. C. Camargo, An. Acad. Bras. Cienc., 2018, 90, 719-744.53. B. Wiley, Y. Sun, B. Mayers and Y. Xia, Chem. Eur. J., 2005, 11, 454-463.54. Y. Sun and Y. Xia, Science, 2002, 298, 2176-2179.55. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, Science, 2007, 315, 493-497.56. S. Furukawa and T. Komatsu, ACS Catal., 2016, 7, 735-765.57. Lingzheng Bu, Nan Zhang, Shaojun Guo, Xu Zhang, Jing Li, Jianlin Yao, Tao Wu, Gang Lu, Jing-Yuan Ma, Dong Su and X. Huang, Science, 2016, 354, 1410-1414.58. I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 2019, 12, 908-931.59. R. Sahay, V. J. Reddy and a. S. Ramakrishna, Int. J. Mech. Mater. Eng., 2014, 9, 25.60. D. Mukherjee, R. Singuru, P. Venkataswamy, D. Damma and B. M. Reddy, ACS Omega, 2019, 4, 4770-4778.3061. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne and M. K. Danquah, Beilstein J. Nanotechnol., 2018, 9, 1050-1074.62. S. Zhu and D. Wang, Adv. Energy Mater., 2017, 7, 1700841.63. X. Yang and D. Wang, ACS Appl. Energy Mater., 2018, 1, 6657-6693.64. P. Christopher, H. Xin, A. Marimuthu and S. Linic, Nat. Mater., 2012, 11, 1044-1050.65. X. Zhang, Y. L. Chen, R. S. Liu and D. P. Tsai, Rep. Prog. Phys., 2013, 76, 046401.66. G. V. Hartland, L. V. Besteiro, P. Johns and A. O. Govorov, ACS Energy Lett., 2017, 2, 1641-1653.67. Y. B. Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens and V. Kokol, Nanomaterials Synthesis: Design, Fabrication and Applications, Elsevier, 2019.68. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem., 2007, 58, 267-297.2.8. References1. B. Wiley, Y. Sun, B. Mayers and Y. Xia, Chem. Eur. J., 2005, 11, 454-463.2. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem., Int. Ed., 2009, 48, 60-103.3. Y. Li, W. Ding, M. Li, H. Xia, D. Wang and X. Tao, J. Mater. Chem. A, 2015, 3, 368-376.624. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683.5. Y. Sun and Y. Xia, Science, 2002, 298, 2176-2179.6. K. Wang, B. Huang, W. Zhang, F. Lv, Y. Xing, W. Zhang, J. Zhou, W. Yang, F. Lin and P. Zhou, J. Mater. Chem. A, 2020, 8, 15746-15751.7. N. Zhang, Q. Shao, Y. Pi, J. Guo and X. Huang, Chem. Mater., 2017, 29, 5009-5015.8. X. Zhao, Q. Di, M. Li, Q. Yang, Z. Zhang, X. Guo, X. Fan, K. Deng, W. Chen, J. Zhang, J. Fang and Z. Quan, Chem. Mater., 2019, 31, 4325-4329.9. E. E. Foos, R. M. Stroud, A. D. Berry, A. W. Snow and J. P. Armistead, J. Am. Chem. Soc., 2000, 122, 7114-7115.10. F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, M. Mavrikakis and W. Xu, Nat. Commun., 2020, 11, 1088.11. Z. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai and H. Zhu, ACS Catal., 2016, 6, 6255-6264.12. X. Zhang, X. Sun, S.-X. Guo, A. M. Bond and J. Zhang, Energy Environ. Sci., 2019, 12, 1334-1340.6313. H. Bi, F. He, Y. Dong, D. Yang, Y. Dai, L. Xu, R. Lv, S. Gai, P. Yang and J. Lin, Chem. Mater., 2018, 30, 3301-3307.14. Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang and C.-H. Yan, Nat. Catal., 2019, 2, 448-456.15. E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X. Zheng, Y. Wang, L. Zheng, C. Chen, D. Wang, J. Zhang and Y. Li, J. Am. Chem. Soc., 2019, 141, 16569-16573.16. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li and Y. Li, Nat. Commun., 2018, 9, 1320.17. N. Hussain, T. Liang, Q. Zhang, T. Anwar, Y. Huang, J. Lang, K. Huang and H. Wu, Small, 2017, 13, 1701349.18. W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu, J. Wu, Q. Yue, Y. Liu, F. Jiao and Y. Kang, Nat. Catal., 2019, 2, 423-430.19. S. Ghosh and L. Manna, Chem. Rev., 2018, 118, 7804-7864.20. M. W. Schmidt, et al, J. Comput. Chem, 1993, 14, 1347–1363.21. M. J. Frisch, et al, Gaussian16 Revision, 2016.22. P. Su & H. Li, J. Chem. Phys, 2009, 131, 14102.6423. Y. Xia, X. Xia and H. C. Peng, J. Am. Chem. Soc., 2015, 137, 7947-66.24. S. Ghosh and L. Manna, Chem. Rev., 2018, 118, 7804-7864.25. S. E. Lohse, N. D. Burrows, L. Scarabelli, L. M. Liz-Marzán and C. J. Murphy, Chem. Mater., 2013, 26, 34-43.26. G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478-2601.27. C. Wang, D. Danovich, S. Shaik and Y. Mo, J. Chem. Theory Comput., 2017, 13, 1626-1637.28. X. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. Zhang and J. A. Rogers, Adv. Mater. Interfaces, 2018, 5, 1800284.29. P. J. Santos, P. A. Gabrys, L. Z. Zornberg, M. S. Lee and R. J. Macfarlane, Nature, 2021, 591, 586-591.30. Z. Quan and J. Fang, Nano Today, 2010, 5, 390-411.31. Z. Zhuang, Q. Peng, B. Zhang and Y. Li, J. Am. Chem. Soc., 2008, 130, 10482-10483.32. L. S. Roselin, R. S. Juang, C. T. Hsieh, S. Sagadevan, A. Umar, R. Selvin and H. H. Hegazy, Materials, 2019, 12, 1229.33. C. Shen, T. Cheng, C. Liu, L. Huang, M. Cao, G. Song, D. Wang, B. Lu, J. Wang, C. Qin, X. Huang, P. Peng, X. Li and Y. Wu, J. Mater. Chem. A, 2020, 8, 453-460.34. R. Zhang, J. Bao, Y. Wang and C. F. Sun, Chem. Sci., 2018, 9, 6193-6198.35. X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, Mater. Chem. Phys., 2003, 78, 99-104.6536. D. K. Smith and B. A. Korgel, Langmuir, 2008, 24, 644-649.37. Z. Quan, Y. Wang and J. Fang, Acc. Chem. Res. 2013, 46, 191-202.3.6. References1. X. Zhao, Q. Di, M. Li, Q. Yang, Z. Zhang, X. Guo, X. Fan, K. Deng, W. Chen, J. Zhang, J. Fang and Z. Quan, Chem. Mater., 2019, 31, 4325-4329.2. W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl and P. Strasser, Nat. Commun., 2017, 8, 944.3. Y. Sun and Z. Tang, MRS Bull., 2020, 45, 20-25.4. Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan and H. Zhang, Adv. Energy Mater., 2014, 4, 1300574.5. T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong and R. J. Cava, Nature, 2001, 411, 54-56.6. P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, J. Phys. Chem. B, 2006, 110, 7238-7248.7. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem., Int. Ed., 2009, 48, 60-103.8. Y. Xia, K. D. Gilroy, H.-C. Peng and X. Xia, Angew. Chem., Int. Ed., 2017, 56, 60-95.819. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683.10. Y. Li, W. Ding, M. Li, H. Xia, D. Wang and X. Tao, J. Mater. Chem. A, 2015, 3, 368-376.11. J. Zhang and J. Fang, J. Am. Chem. Soc., 2009, 131, 18543–18547.12. Q. Yang, X. Zhao, X. Wu, M. Li, Q. Di, X. Fan, J. Zhu, X. Song, Q. Li and Z. Quan, Chem. Mater., 2019, 31, 2248-2252.13. E. Antolini, ACS Catal., 2014, 4, 1426-1440.14. A. R. Zeradjanin, J. Masa, I. Spanos and R. Schlögl, Front. in Energy Res., 2021, 8, 613092.15. B. O’Driscoll and J. M. González-Jiménez, Rev. Mineral. Geochem., 2016, 81, 489-578.16. J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong and J.-B. Baek, Nat. Nanotechnol., 2017, 12, 441-446.17. R. J. A. Esteves, M. Q. Ho and I. U. Arachchige, Chem. Mater., 2015, 27, 1559-1568.18. K. Tabatabaei, H. Lu, B. M. Nolan, X. Cen, C. E. McCold, X. Zhang, R. L. Brutchey, K. van Benthem, J. Hihath and S. M. Kauzlarich, Chem. Mater., 2017, 29, 7353-7363.19. S. Ganguly, N. Kazem, D. Carter and S. M. Kauzlarich, J. Am. Chem. Soc., 2014, 136, 1296-1299.8220. C. W. Stephen G. Hickey, Bernd Rellinghaus, and Alexander Eychmuller, J. Am. Chem. Soc., 2008, 130, 14978-14980.4.6. References1. Z. A. C. Ramli and S. K. Kamarudin, Nanoscale Res. Lett., 2018, 13, 410-434.2. X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng, Nat. Nanotechnol., 2011, 6, 28-32.3. J. V. Perales-Rondón, A. Ferre-Vilaplana, J. M. Feliu, and E. Herrero, J. Am. Chem. Soc., 2014, 136, 13110-13113.4. A. Ferre-Vilaplana, J. V. C. Perales-Rondón, J. M. Feliu, and E. Herrero, ACS Catal., 2015, 5, 645-654.1005. P. N. Duchesne, Z. Li, C. P. Deming, V. Fung, X. Zhao, J. Yuan, T. Regier, A. Aldalbahi, Z. Almarhoon, and S. Chen, Nat. Mater., 2018, 17, 1033-1039.6. C. Li, Q. Yuan, B. Ni, T. He, S. Zhang, Y. Long, L. Gu, and X. Wang, Nat. Commun., 2018, 9, 3702.7. S. Luo, P. K. Shen, ACS Nano, 2017, 11, 11946-11953.8. L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, and D. Su, Science, 2016, 354, 1410-1414.9. L. Wu, A. Fournier, J. J. Willis, M. Cargnello, and C. J. Tassone, Nano Lett., 2018, 18, 4053-4057.10. Z. Wu, B. C. Bukowski, Z. Li, C. Milligan, L. Zhou, T. Ma, Y. Wu, Y. Ren, F. H. Ribeiro, and W. N. Delgass, J. Am. Chem. Soc., 2018, 140, 14870-14877.11. Y. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia and H. Zhang, Adv. Mater., 2017, 29, 1605997.12. A. Kowal, M. Li, M. Shao, K. Sasaki, M. Vukmirovic, J. H. Zhang, N. Marinkovic, P. Liu, A. Frenkel, and R. Adzic, Nat. Mater., 2009, 8, 325-330.13. S. Furukawa and T. Komatsu, ACS Catal., 2016, 7, 735-765.14. Z. Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L. A. Curtiss, and W. Huang, J. Am. Chem. Soc., 2017, 139, 4762-4768.15. Y. Kang, J. B. Pyo, X. Ye, T. R. Gordon, and C. B. Murray, ACS Nano, 2012, 6, 5642-5647.10116. J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski, Q. Li, G. Wu, and D. Su, Joule, 2019, 3, 956-991.17. D. Xu, S. Bliznakov, Z. Liu, J. Fang, and N. Dimitrov, Angew. Chem., Int. Ed., 2010, 49, 1282-1285.18. Lingzheng Bu, Nan Zhang, Shaojun Guo, Xu Zhang, Jing Li, Jianlin Yao, Tao Wu, Gang Lu, Jing-Yuan Ma, Dong Su and X. Huang, Science, 2016, 354, 1410-1414.19. X. Ji, K. T. Lee, R. Holden, L. Zhang, J. Zhang, G. A. Botton, M. Couillard, and L. F. Nazar, Nat. Chem., 2010, 2, 286-293.20. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, and H. D. Abruña, Nat. Mater., 2013, 12, 81-87.21. Q. Feng, S. Zhao, D. He, S. Tian, L. Gu, X. Wen, C. Chen, Q. Peng, D. Wang, and Y. Li, J. Am. Chem. Soc., 2018, 140, 2773-2776.22. S. Luo, L. Zhang, Y. Liao, L. Li, Q. Yang, X. Wu, X. Wu, D. He, C. He, W. Chen, Q. Wu, M. Li, E. J. M. Hensen and Z. Quan, Adv. Mater., 2021, 33, 08508.23. Y. Qin, M. Luo, Y. Sun, C. Li, B. Huang, Y. Yang, Y. Li, L. Wang, and S. Guo, ACS Catal., 2018, 8, 5581-5590.24. M. Armbruster, Sci Technol Adv. Mater., 2020, 21, 303-322.25. W. Xiao, W. Lei, M. Gong, H. L. Xin, and D. Wang, ACS Catal., 2018, 8, 3237-3256.26. H. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. C. Abruña, and F. J. DiSalvo, J. Am. Chem. Soc., 2012, 134, 18453-18459.10227. M. Armbruster, R. Schlogl and Y. Grin, Sci. Technol. Adv. Mater., 2014, 15, 034803.28. S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683.5.6. References1. J. Zhang, K. Sun, D. Li, T. Deng, G. Lu and C. Cai, Appl. Catal. A: Gen., 2019, 569, 190-195.2. A. A. Ibrahim, A. Lin, F. Zhang, K. M. AbouZeid and M. S. El-Shall, ChemCatChem, 2017, 9, 469-480.3. H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou and Q. Xia, Green Chem., 2017, 19, 5714-5722.1234. X. Liu, L. Xu, G. Xu, W. Jia, Y. Ma and Y. Zhang, ACS Catal., 2016, 6, 7611-7620.5. X. Zhang, J. Tang, Q. Zhang, Q. Liu, Y. Li, L. Chen, C. Wang and L. Ma, Catal. Today, 2019, 319, 41-47.6. A. K. Singh, S. Jang, J. Y. Kim, S. Sharma, K. C. Basavaraju, M.-G. Kim, K.-R. Kim, J. S. Lee, H. H. Lee and D.-P. Kim, ACS Catal., 2015, 5, 6964-6972.7. Z. Gao, F. Liu, L. Wang and F. Luo, Appl. Surf. Sci., 2019, 480, 548-556.8. D. Mukherjee, R. Singuru, P. Venkataswamy, D. Damma and B. M. Reddy, ACS Omega, 2019, 4, 4770-4778.9. L. Jiang, P. Zhou, C. Liao, Z. Zhang and S. Jin, ChemSusChem, 2018, 11, 959-964.10. M. Grilc, B. Likozar and J. Levec, Appl. Catal. B: Environ., 2014, 150-151, 275-287.11. A. L. Jongerius, R. Jastrzebski, P. C. A. Bruijnincx and B. M. Weckhuysen, J. Catal., 2012, 285, 315-323.12. A. Popov, E. Kondratieva, L. Mariey, J. M. Goupil, J. El Fallah, J.-P. Gilson, A. Travert and F. Maugé, J. Catal., 2013, 297, 176-186.13. W. Wang, K. Zhang, Z. Qiao, L. Li, P. Liu and Y. Yang, Catal. Commun., 2014, 56, 17-22.14. M. Auersvald, B. Shumeiko, M. Staš, D. Kubička, J. Chudoba and P. Šimáček, ACS Sustainable Chem. Eng., 2019, 7, 7080-7093.15. J. L. Santos, M. Alda-Onggar, V. Fedorov, M. Peurla, K. Eränen, P. Mäki-Arvela, M. Á. Centeno and D. Y. Murzin, Appl Catal. A: Gen., 2018, 561, 137-149.12416. P. D. Coan, M. B. Griffin, P. N. Ciesielski and J. W. Medlin, J. Catal., 2019, 372, 311-320.17. N. Scotti, M. Dangate, A. Gervasini, C. Evangelisti, N. Ravasio and F. Zaccheria, ACS Catal., 2014, 4, 2818-2826.18. X. Yang, Y. Liang, Y. Cheng, W. Song, X. Wang, Z. Wang and J. Qiu, Catal. Commun., 2014, 47, 28-31.19. H. Jiang, X. Yu, X. Peng, H. Zhang, R. Nie, X. Lu, D. Zhou and Q. Xia, RSC Adv., 2016, 6, 69045-69051.20. J. Kayalvizhi and A. Pandurangan, Mol. Catal., 2017, 436, 67-77.21. I. Yati, A. A. Dwiatmoko, J. S. Yoon, J.-W. Choi, D. J. Suh, J. Jae and J.-M. Ha, Appl. Catal. A: Gen., 2016, 524, 243-250.22. X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li and Y. Wang, J. Am. Chem. Soc., 2012, 134, 16987-16990.23. N. Zhang, C. Han, Y. Xu, J. J. Foley Iv, D. Zhang, J. Codrington, S. K. Gray and Y. Sun, Nat. Photon., 2016, 10, 473-482.24. C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander and N. J. Halas, Nano Lett., 2016, 16, 6677-6682.25. D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander and N. J. Halas, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 8916-8920.12526. K. D. Rasamani, J. J. Foley, B. Beidelman and Y. Sun, Nano Research, 2017, 10, 1292-1301.27. X. Dai, K. D. Rasamani, G. Hall, R. Makrypodi and Y. Sun, Front. Chem., 2018, 6, 494.28. Q. Wei, S. Wu and Y. Sun, Adv. Mater., 2018, 30, 1802082.29. S. Stewart, Q. Wei and Y. Sun, Chem. Sci., 2021, 12, 1227-1239.30. Y. Sun and Z. Tang, MRS Bull., 2020, 45, 20-25.31. L. K. Ausman and G. C. Schatz, J. Chem. Phys., 2008, 129, 054704.32. G. V. Hartland, L. V. Besteiro, P. Johns and A. O. Govorov, ACS Energy Lett., 2017, 2, 1641-1653.33. K. D. Rasamani and Y. Sun, J. Chem. Phys., 2020, 152, 084706.34. X. Dai, K. D. Rasamani, S. Wu and Y. Sun, Mater. Today Energy, 2018, 10, 15-22.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/356276
专题理学院_化学系
推荐引用方式
GB/T 7714
Li MR. METAL NANOMATERIALS: SYNTHESIS, DESIGN, AND APPLICATIONS[D]. 美国. 天普大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11654004-李茗蕊-化学系.pdf(9481KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李茗蕊]的文章
百度学术
百度学术中相似的文章
[李茗蕊]的文章
必应学术
必应学术中相似的文章
[李茗蕊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。