题名 | A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images |
作者 | |
通讯作者 | Xu, Jinfeng; Dong, Fajin |
发表日期 | 2022-07-07
|
DOI | |
发表期刊 | |
ISSN | 2234-943X
|
卷号 | 12 |
摘要 | PurposeThe purpose of this study was to explore the performance of different parameter combinations of deep learning (DL) models (Xception, DenseNet121, MobileNet, ResNet50 and EfficientNetB0) and input image resolutions (REZs) (224 x 224, 320 x 320 and 488 x 488 pixels) for breast cancer diagnosis. MethodsThis multicenter study retrospectively studied gray-scale ultrasound breast images enrolled from two Chinese hospitals. The data are divided into training, validation, internal testing and external testing set. Three-hundreds images were randomly selected for the physician-AI comparison. The Wilcoxon test was used to compare the diagnose error of physicians and models under P=0.05 and 0.10 significance level. The specificity, sensitivity, accuracy, area under the curve (AUC) were used as primary evaluation metrics. ResultsA total of 13,684 images of 3447 female patients are finally included. In external test the 224 and 320 REZ achieve the best performance in MobileNet and EfficientNetB0 respectively (AUC: 0.893 and 0.907). Meanwhile, 448 REZ achieve the best performance in Xception, DenseNet121 and ResNet50 (AUC: 0.900, 0.883 and 0.871 respectively). In physician-AI test set, the 320 REZ for EfficientNetB0 (AUC: 0.896, P < 0.1) is better than senior physicians. Besides, the 224 REZ for MobileNet (AUC: 0.878, P < 0.1), 448 REZ for Xception (AUC: 0.895, P < 0.1) are better than junior physicians. While the 448 REZ for DenseNet121 (AUC: 0.880, P < 0.05) and ResNet50 (AUC: 0.838, P < 0.05) are only better than entry physicians. ConclusionBased on the gray-scale ultrasound breast images, we obtained the best DL combination which was better than the physicians. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Commission of Science and Technology of Shenzhen[GJHZ20200731095401004]
|
WOS研究方向 | Oncology
|
WOS类目 | Oncology
|
WOS记录号 | WOS:000829754100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/359447 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.Southern Univ Sci & Technol, Jinan Univ, Clin Coll 2, Shenzhen Peoples Hosp,Affiliated Hosp 1,Clin Coll, Shenzhen, Peoples R China 2.Microport Prophecy, Res & Dev Dept, Shanghai, Peoples R China 3.Illuminate LLC Co, Res & Dev Dept, Shenzhen, Peoples R China 4.Chinese Minist Educ, Key Lab Cardiovasc Remodeling & Funct Res, Jinan, Peoples R China 5.Chinese Minist Hlth, Jinan, Peoples R China 6.Shandong Univ, Qilu Hosp, Cheeloo Coll Med, State & Shandong Prov Joint Key Lab Translat Cardi, Jinan, Peoples R China |
第一作者单位 | 南方科技大学第一附属医院 |
通讯作者单位 | 南方科技大学第一附属医院 |
第一作者的第一单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Wu, Huaiyu,Ye, Xiuqin,Jiang, Yitao,et al. A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images[J]. Frontiers in Oncology,2022,12.
|
APA |
Wu, Huaiyu.,Ye, Xiuqin.,Jiang, Yitao.,Tian, Hongtian.,Yang, Keen.,...&Dong, Fajin.(2022).A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images.Frontiers in Oncology,12.
|
MLA |
Wu, Huaiyu,et al."A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images".Frontiers in Oncology 12(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论