中文版 | English
题名

GANSim-3D for Conditional Geomodeling: Theory and Field Application

作者
通讯作者Hou, Jiagen; Zhang, Dongxiao
发表日期
2022-07-01
DOI
发表期刊
ISSN
0043-1397
EISSN
1944-7973
卷号58期号:7
摘要
We present a Generative Adversarial Network (GAN)-based 3D reservoir simulation framework, GANSim-3D, where the generator is progressively trained to capture geological patterns and relationships between various input conditioning data and output earth models, and is thus able to directly produce multiple 3D realistic and conditional earth models from given conditioning data. Conditioning data can include 3D sparse well facies data, probability maps, and global features, such as facies proportion. The generator only includes 3D convolutional layers, and once trained on a data set consisting of small-size data cubes, it can be used for geomodeling of 3D reservoirs of large arbitrary sizes by simply extending the inputs. To illustrate how GANSim-3D is practically used and to verify GANSim-3D, a field karst cave reservoir in Tahe area of China is used as an example. The 3D well facies data and 3D probability map of caves obtained from geophysical interpretation are taken as conditioning data. First, we create training, validation, and test datasets consisting of 64 x 64 x 64-size 3D cave facies models integrating field geological patterns, 3D well facies data, and 3D probability maps. Then, the 3D generator is trained and evaluated with various metrics. Next, we apply the pretrained generator for conditional geomodeling of two field cave reservoirs of size 64 x 64 x 64 and 336 x 256 x 96, respectively. The produced reservoir realizations prove to be diverse, consistent with field geological patterns and field conditioning data, and robust to noise in the 3D probability maps. Each realization with 336 x 256 x 96 cells only takes 0.988 s using 1 GPU.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[42072146]
WOS研究方向
Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
WOS类目
Environmental Sciences ; Limnology ; Water Resources
WOS记录号
WOS:000828782900001
出版者
EI入藏号
20223112453655
EI主题词
Generative adversarial networks ; Geology ; Probability ; Three dimensional computer graphics
EI分类号
Geology:481.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Probability Theory:922.1
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/359466
专题工学院_环境科学与工程学院
作者单位
1.China Univ Petr, Coll Geosci, Beijing, Peoples R China
2.Peng Cheng Lab, Dept Math & Theories, Shenzhen, Peoples R China
3.Stanford Univ, Dept Energy Resources Engn & Geol Sci, Stanford, CA 94305 USA
4.China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
5.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R China
6.Sinopec, Petr Explorat & Prod Res Inst, Beijing, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Song, Suihong,Mukerji, Tapan,Hou, Jiagen,et al. GANSim-3D for Conditional Geomodeling: Theory and Field Application[J]. WATER RESOURCES RESEARCH,2022,58(7).
APA
Song, Suihong,Mukerji, Tapan,Hou, Jiagen,Zhang, Dongxiao,&Lyu, Xinrui.(2022).GANSim-3D for Conditional Geomodeling: Theory and Field Application.WATER RESOURCES RESEARCH,58(7).
MLA
Song, Suihong,et al."GANSim-3D for Conditional Geomodeling: Theory and Field Application".WATER RESOURCES RESEARCH 58.7(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Suihong]的文章
[Mukerji, Tapan]的文章
[Hou, Jiagen]的文章
百度学术
百度学术中相似的文章
[Song, Suihong]的文章
[Mukerji, Tapan]的文章
[Hou, Jiagen]的文章
必应学术
必应学术中相似的文章
[Song, Suihong]的文章
[Mukerji, Tapan]的文章
[Hou, Jiagen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。