中文版 | English
题名

A unified parameter model based on machine learning for describing microbial transport in porous media

作者
通讯作者Li,Rong; Liu,Chongxuan
发表日期
2022-11-01
DOI
发表期刊
ISSN
0048-9697
EISSN
1879-1026
卷号845
摘要
The transport and retention of microorganisms are typically described using attachment/detachment and straining/liberation models. However, the parameters in the models varied significantly, posing a significant challenge to describe microbial transport under different environmental conditions. A neural network (ANN) model was developed in this study to link the parameters in the model with the factors influencing microbial transport including the properties of microorganisms such as size and surface potentials, and the properties of porous media such as grain size and porosity, and flow conditions. Exhaustive search of literature renders 420 sets of experimental data of microbial transport, which were fitted using the microbial transport model to obtain model parameters. The model parameters, together with the factors influencing microbial transport, were then used to train an ANN model to search for their relationship. An ANN-based parameter relationship was derived and was then used to simulate microbial transport. The simulated results using the relationship roughly matched with the experimental data under different environmental conditions, indicating that a unified relationship was established between the parameters of the microbial transport model and the factors influencing microbial transport, and that microbial transport can be described using the microbial transport model with the ANN-based unified relationship for model parameters.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2019YFC1803903];National Natural Science Foundation of China[41830861];National Natural Science Foundation of China[41907166];
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000836115400007
出版者
EI入藏号
20223012393195
EI主题词
Machine learning ; Microorganisms ; Porous materials
EI分类号
Biology:461.9 ; Artificial Intelligence:723.4 ; Materials Science:951
ESI学科分类
ENVIRONMENT/ECOLOGY
Scopus记录号
2-s2.0-85134418964
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/359514
专题工学院_环境科学与工程学院
作者单位
1.School of Environment,Harbin Institute of Technology,Harbin,150090,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.School of Environment and Energy,South China University of Technology,Guangzhou,510006,China
4.The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters,Ministry of Education,South China University of Technology,Guangzhou,Guangdong,510006,China
5.School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,518055,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Ke,Dongfang,Li,Rong,Ning,Zigong,et al. A unified parameter model based on machine learning for describing microbial transport in porous media[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2022,845.
APA
Ke,Dongfang,Li,Rong,Ning,Zigong,&Liu,Chongxuan.(2022).A unified parameter model based on machine learning for describing microbial transport in porous media.SCIENCE OF THE TOTAL ENVIRONMENT,845.
MLA
Ke,Dongfang,et al."A unified parameter model based on machine learning for describing microbial transport in porous media".SCIENCE OF THE TOTAL ENVIRONMENT 845(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ke,Dongfang]的文章
[Li,Rong]的文章
[Ning,Zigong]的文章
百度学术
百度学术中相似的文章
[Ke,Dongfang]的文章
[Li,Rong]的文章
[Ning,Zigong]的文章
必应学术
必应学术中相似的文章
[Ke,Dongfang]的文章
[Li,Rong]的文章
[Ning,Zigong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。