中文版 | English
题名

Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge

作者
通讯作者Zhuang,Xiahai; Li,Lei
发表日期
2022-10-01
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号81
摘要
Accurate computing, analysis and modeling of the ventricles and myocardium from medical images are important, especially in the diagnosis and treatment management for patients suffering from myocardial infarction (MI). Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) provides an important protocol to visualize MI. However, compared with the other sequences LGE CMR images with gold standard labels are particularly limited. This paper presents the selective results from the Multi-Sequence Cardiac MR (MS-CMR) Segmentation challenge, in conjunction with MICCAI 2019. The challenge offered a data set of paired MS-CMR images, including auxiliary CMR sequences as well as LGE CMR, from 45 patients who underwent cardiomyopathy. It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation focusing on myocardial wall of the left ventricle and blood cavity of the two ventricles. In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the ventricle segmentation of LGE CMR. Nine representative works were selected for evaluation and comparisons, among which three methods are unsupervised domain adaptation (UDA) methods and the other six are supervised. The results showed that the average performance of the nine methods was comparable to the inter-observer variations. Particularly, the top-ranking algorithms from both the supervised and UDA methods could generate reliable and robust segmentation results. The success of these methods was mainly attributed to the inclusion of the auxiliary sequences from the MS-CMR images, which provide important label information for the training of deep neural networks. The challenge continues as an ongoing resource, and the gold standard segmentation as well as the MS-CMR images of both the training and test data are available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg/).
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61971142];National Natural Science Foundation of China[62011540404];National Natural Science Foundation of China[62111530195];
WOS研究方向
Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000861027600002
出版者
EI入藏号
20223012406366
EI主题词
Deep neural networks ; Gadolinium ; Heart ; Image segmentation ; Magnetic resonance ; Medical imaging ; Patient treatment
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Rare Earth Metals:547.2 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Imaging Techniques:746
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85134615635
来源库
Scopus
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/359523
专题工学院_计算机科学与工程系
作者单位
1.School of Data Science,Fudan University,Shanghai,China
2.School of Biomedical Engineering,Shanghai Jiao Tong University,Shanghai,China
3.Biomedical Image Analysis Group,Imperial College London,London,United Kingdom
4.Department Mathematics & Computer Science,Universitat de Barcelona,Barcelona,Spain
5.Friedrich-Alexander-Universität Erlangen-Nürnberg,Germany
6.School of Computer Science and Technology,Harbin Institute of Technology,Harbin,China
7.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
8.Department of Informatics,Technical University of Munich,Germany
9.INRIA,Université Côte d'Azur,Sophia Antipolis,France
10.NVIDIA,Bethesda,United States
11.School of Informatics,Xiamen University,Xiamen,China
12.College of Electrical Engineering,Sichuan University,Chengdu,China
13.Tencent AI Lab,Shenzhen,China
推荐引用方式
GB/T 7714
Zhuang,Xiahai,Xu,Jiahang,Luo,Xinzhe,et al. Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge[J]. MEDICAL IMAGE ANALYSIS,2022,81.
APA
Zhuang,Xiahai.,Xu,Jiahang.,Luo,Xinzhe.,Chen,Chen.,Ouyang,Cheng.,...&Li,Lei.(2022).Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge.MEDICAL IMAGE ANALYSIS,81.
MLA
Zhuang,Xiahai,et al."Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge".MEDICAL IMAGE ANALYSIS 81(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhuang,Xiahai]的文章
[Xu,Jiahang]的文章
[Luo,Xinzhe]的文章
百度学术
百度学术中相似的文章
[Zhuang,Xiahai]的文章
[Xu,Jiahang]的文章
[Luo,Xinzhe]的文章
必应学术
必应学术中相似的文章
[Zhuang,Xiahai]的文章
[Xu,Jiahang]的文章
[Luo,Xinzhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。