题名 | Training Quantized Deep Neural Networks via Cooperative Coevolution |
作者 | |
通讯作者 | Liu,Shengcai |
DOI | |
发表日期 | 2022
|
会议名称 | 13th International Conference on Swarm Intelligence (ICSI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-09726-3
|
会议录名称 | |
卷号 | 13345 LNCS
|
页码 | 81-93
|
会议日期 | JUL 15-19, 2022
|
会议地点 | null,Xian,PEOPLES R CHINA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | This work considers a challenging Deep Neural Network (DNN) quantization task that seeks to train quantized DNNs without involving any full-precision operations. Most previous quantization approaches are not applicable to this task since they rely on full-precision gradients to update network weights. To fill this gap, in this work we advocate using Evolutionary Algorithms (EAs) to search for the optimal low-bits weights of DNNs. To efficiently solve the induced large-scale discrete problem, we propose a novel EA based on cooperative coevolution that repeatedly groups the network weights based on the confidence in their values and focuses on optimizing the ones with the least confidence. To the best of our knowledge, this is the first work that applies EAs to train quantized DNNs. Experiments show that our approach surpasses previous quantization approaches and can train a 4-bit ResNet-20 on the Cifar-10 dataset with the same test accuracy as its full-precision counterpart. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Peacock Plan[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Robotics
|
WOS类目 | Computer Science, Artificial Intelligence
; Robotics
|
WOS记录号 | WOS:000874477100008
|
EI入藏号 | 20223012407916
|
EI主题词 | Deep neural networks
; Optimization
; Statistical tests
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Optimization Techniques:921.5
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85134676021
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/359583 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Peng,Fu,Liu,Shengcai,Lu,Ning,et al. Training Quantized Deep Neural Networks via Cooperative Coevolution[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:81-93.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论