中文版 | English
题名

Training Quantized Deep Neural Networks via Cooperative Coevolution

作者
通讯作者Liu,Shengcai
DOI
发表日期
2022
会议名称
13th International Conference on Swarm Intelligence (ICSI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-09726-3
会议录名称
卷号
13345 LNCS
页码
81-93
会议日期
JUL 15-19, 2022
会议地点
null,Xian,PEOPLES R CHINA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
This work considers a challenging Deep Neural Network (DNN) quantization task that seeks to train quantized DNNs without involving any full-precision operations. Most previous quantization approaches are not applicable to this task since they rely on full-precision gradients to update network weights. To fill this gap, in this work we advocate using Evolutionary Algorithms (EAs) to search for the optimal low-bits weights of DNNs. To efficiently solve the induced large-scale discrete problem, we propose a novel EA based on cooperative coevolution that repeatedly groups the network weights based on the confidence in their values and focuses on optimizing the ones with the least confidence. To the best of our knowledge, this is the first work that applies EAs to train quantized DNNs. Experiments show that our approach surpasses previous quantization approaches and can train a 4-bit ResNet-20 on the Cifar-10 dataset with the same test accuracy as its full-precision counterpart.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Peacock Plan[KQTD2016112514355531]
WOS研究方向
Computer Science ; Robotics
WOS类目
Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:000874477100008
EI入藏号
20223012407916
EI主题词
Deep neural networks ; Optimization ; Statistical tests
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85134676021
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/359583
专题工学院_计算机科学与工程系
作者单位
Guangdong Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Peng,Fu,Liu,Shengcai,Lu,Ning,et al. Training Quantized Deep Neural Networks via Cooperative Coevolution[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:81-93.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng,Fu]的文章
[Liu,Shengcai]的文章
[Lu,Ning]的文章
百度学术
百度学术中相似的文章
[Peng,Fu]的文章
[Liu,Shengcai]的文章
[Lu,Ning]的文章
必应学术
必应学术中相似的文章
[Peng,Fu]的文章
[Liu,Shengcai]的文章
[Lu,Ning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。