中文版 | English
题名

QUANTUM RODS AND THEIR FUNCTIONAL FILMS FOR DISPLAY

其他题名
量子棒及其用于显示的功能性薄膜
姓名
姓名拼音
ZHOU Ziming
学号
11655006
学位类型
博士
学位专业
电子与计算机工程
导师
孙小卫
导师单位
电子与电气工程系
外机构导师
Teo Kie Leong
外机构导师单位
新加坡国立大学
论文答辩日期
2022-03-09
论文提交日期
2022-08-01
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

Presently, liquid crystal display (LCD) and organic light emitting diode (OLED) are two popular display technologies. However, LCD technology has small color gamut and low power conversion efficiency, and OLEDs are suffering color shifting and cannot achieve wide color gamut display, because emission is not narrow enough and intrinsic organic materials are unstable.

Semiconductor quantum dots (QDs) are nanomaterials with high absolute quantum yield (QY) and has size dependent optical properties and narrow emission as well as they can achieve wide color gamut display. As a variant of QDs, quantum rods (QRs) reserve all these advantages, and have polarized emission and suffer less reabsorption of light. Therefore, QRs are brought into focus and applied in display techniques to achieve polarized display, high power conversion efficiency and wide color gamut.

In this thesis, detailed investigations on the synthesis, display applications of QR materials are carried out. Firstly, CdSe/CdS dot-in-rod QRs with high absolute photoluminescent QY and accurate controllable morphology are synthesized. Secondly, the synthesized QRs are aligned to fabricate QR enhancement films with high degree of linearly polarized emission, which can improve efficiency and color gamut of LCD technique. Thirdly, the chiral transferred QRs are dopped into self-assembled chiral supramolecular system to fabricate circularly polarized luminescent films. Finally, the synthesized QRs are used as emissive layer of OLEDs and achieve wider color gamut and high external quantum efficiency. This research work shows that QRs are promising candidates for display applications.

其他摘要

液晶显示(LCD)和有机发光二极管(OLED)是目前主流的两种显示技术。然而,LCD存在色域小、功率转换效率低等问题;OLED由于有机材料固有的不稳定和发射光不够窄的原因,导致无法实现宽色域,且存在颜色漂移等问题。

半导体量子点(QDs)是一种具有高绝对量子产率(QY)的纳米材料,具有随尺寸变化的光学性质和窄发射光谱,可实现宽色域显示。作为量子点的一种变体,量子棒(QRs)保留了所有这些优点,且具有偏振发射和较少的光重吸收等特性。因此,将QRs引起广泛关注并被应用于显示技术中,以实现偏振显示、高功率转换效率和宽色域等功能。

本文对QR材料的合成、显示领域的应用等方面进行了详细的研究。首先,合成了具有高光致发光绝对量子产率和精确可控形貌的点状核心棒状壳层的CdSe/CdS QRs;其次,将合成的QRs进行排列,制备出高度线偏振发射的QR增强薄膜,应用并提高了液晶显示技术的效率和色域。再次,将手性转移的QRs掺杂到自组装的手性超分子体系中,制备了圆偏振发光的QR薄膜。最后,将合成的QRs作为OLED器件的发光层,实现了器件更宽的色域和更高的外量子效率。这项研究工作表明,QRs码具有很好的显示应用前景。

关键词
其他关键词
语种
英语
培养类别
联合培养
入学年份
2017
学位授予年份
2022-06
参考文献列表

[1] Swart, I., Liljeroth, P. & Vanmaekelbergh, D. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chem. Rev. 116, 11181-11219, (2016).
[2] Ekimov, A. I. & Onushchenko, A. A. Size quantization of the electron-energy spectrum in a microscopic semiconductor crystal. Jetp Lett. 40, 1136-1139 (1984).
[3] Rossetti, R., Ellison, J. L., Gibson, J. M. & Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80, 4464-4469, (1984).
[4] Barbara Moran, What Are Quantum Dots? MSE spotlight faculty, MSE spotlight research, BU College of Engineering, Tuesday, June 13th, 2017. Link: https://www.bu.edu/eng/2017/06/13/what-are-quantum-dots/.
[5] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science, vol. 292, no. 5524, pp. 2060-2063, Jun 15, 2001.
[6] N. D. Bronstein, L. F. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, R. G. Nuzzo, Acs Nano 2014, 8, 44.
[7] M. Hasegawa, and Y. Hirayama, “Use of quantum rods for display applications,” Journal of the Society for Information Display, vol. 24, no. 5, pp. 286-292, May, 2016.
[8] P. D. Cunningham, J. B. Souza, I. Fedin, C. X. She, B. Lee, and D. V. Talapin, “Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology,” Acs Nano, vol. 10, no. 6, pp. 5769-5781, Jun, 2016.
[9] T. Aubert, L. Paangetic, M. Mohammadimasoudi, K. Neyts, J. Beeckman, C. Clasen, and Z. Hens, “Large-Scale and Electroswitchable Polarized Emission from Semiconductor Nanorods Aligned in Polymeric Nanofibers,” Acs Photonics, vol. 2, no. 5, pp. 583-588, May, 2015.
[10] M. Mohammadimasoudi, J. Beeckman, Z. Hens, and K. Neyts, “Hybrid fluorescent layer emitting polarized light,” Apl Materials, vol. 5, no. 7, Jul, 2017.
[11] M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” Rsc Advances, vol. 6, no. 61, pp. 55736-55744, 2016.
[12] H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-Tunable Light-Emitting Device Based on the Mixture of CdSe Nanorods and Dots Embedded in Liquid-Crystal Cells,” Journal of Physical Chemistry C, vol. 114, no. 17, pp. 7995-7998, May, 2010.
[13] T. Wang, X. R. Wang, D. LaMontagne, Z. W. Wang, and Y. C. Cao, “Macroscale Lateral Alignment of Semiconductor Nanorods into Freestanding Thin Films,” Journal of the American Chemical Society, vol. 135, no. 16, pp. 6022-6025, Apr, 2013.
[14] A. Rizzo, C. Nobile, M. Mazzeo, M. De Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna, and G. Gigli, “Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface,” Acs Nano, vol. 3, no. 6, pp. 1506-1512, Jun, 2009.
[15] R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, and H. Weller, “Polarized-light-emitting quantum-rod diodes,” Advanced Materials, vol. 17, no. 11, pp. 1436-1439, Jun, 2005.
[16] P. Liu, S. Singh, Y. Guo, J.-J. Wang, H. Xu, C. Silien, N. Liu, and K. M. Ryan, “Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers,” Scientific Reports, vol. 7, 43884, 2017.
[17] Y. Gao, T. Van Duong, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, X. W. Sun, H. Sun, and H. V. Demir, “Observation of polarized gain from aligned colloidal nanorods,” Nanoscale, vol. 7, no. 15, pp. 6481-6486, 2015, 2015.
[18] M. Zavelani-Rossi, R. Krahne, G. Della Valle, S. Longhi, I. R. Franchini, S. Girardo, F. Scotognella, D. Pisignano, L. Manna, G. Lanzani, and F. Tassone, “Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition,” Laser & Photonics Reviews, vol. 6, no. 5, pp. 678-683, Sep, 2012.
[19] M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale, vol. 2, no. 6, pp. 931-935, 2010, 2010.
[20] B. Moller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Mode control by nanoengineering light emitters in spherical microcavities,” Applied Physics Letters, vol. 83, no. 13, pp. 2686-2688, Sep, 2003.
[21] F. Qiao, W. Xu, M. Liu, J. Yang, X. J. Cui, Q. Wang, J. M. Bian, and D. H. Kim, “Effect of Cd-phosphonate complex on the self-assembly structure of colloidal nanorods,” Materials Letters, vol. 180, pp. 85-88, Oct, 2016.
[22] M. Wang, J. Jiang, J. Shi, and L. Guo, “CdS/CdSe Core-Shell Nanorod Arrays: Energy Level Alignment and Enhanced Photoelectrochemical Performance,” Acs Applied Materials & Interfaces, vol. 5, no. 10, pp. 4021-4025, May 22, 2013.
[23] L. Bian, X. W. Zhang, C. Y. Luan, J. A. Zapien, X. Z. Zhang, Y. M. Wu, and J. S. Jie, “Hole-induced large-area homoepitaxial growth of CdSe nanowire arrays for photovoltaic application,” Journal of Materials Chemistry A, vol. 1, no. 21, pp. 6313-6319, 2013.
[24] D. Sahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” Journal of Applied Physics, vol. 110, no. 3, 033108, Aug 1, 2011.
[25] L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for Luminescent Solar Concentrators,” Nano Letters, vol. 15, no. 2, pp. 1315-1323, Feb, 2015.
[26] N. D. Bronstein, L. F. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent Solar Concentration with Semiconductor Nanorods and Transfer-Printed Micro-Silicon Solar Cells,” Acs Nano, vol. 8, no. 1, pp. 44-53, Jan, 2014.
[27] F. Qiu, Z. J. Han, J. J. Peterson, M. Y. Odoi, K. L. Sowers, and T. D. Krauss, “Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles,” Nano Letters, vol. 16, no. 9, pp. 5347-5352, Sep, 2016.
[28] H. J. Lv, T. P. A. Ruberu, V. E. Fleischauer, W. W. Brennessel, M. L. Neidig, and R. Eisenberg, “Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes,” Journal of the American Chemical Society, vol. 138, no. 36, pp. 11654-11663, Sep, 2016.
[29] P. Kalisman, Y. Nakibli, and L. Amirav, “Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods,” Jove-Journal of Visualized Experiments, no. 108, pp. 9, Feb, 2016.
[30] S. Deka, A. Quarta, M. G. Lupo, A. Falqui, S. Boninelli, C. Giannini, G. Morello, M. De Giorgi, G. Lanzani, C. Spinella, R. Cingolani, T. Pellegrino, and L. Manna, “CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes,” Journal of the American Chemical Society, vol. 131, no. 8, pp. 2948-2958, Mar, 2009.
[31] K. T. Yong, I. Roy, H. E. Pudavar, E. J. Bergey, K. M. Tramposch, M. T. Swihart, and P. N. Prasad, “Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods,” Advanced Materials, vol. 20, no. 8, pp. 1412-1417, Apr, 2008.
[32] K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. L. He, M. T. Swihart, A. Maitra, and P. N. Prasad, “Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells,” Nano Letters, vol. 7, no. 3, pp. 761-765, Mar, 2007.
[33] A. H. Fu, W. W. Gu, B. Boussert, K. Koski, D. Gerion, L. Manna, M. Le Gros, C. A. Larabell, and A. P. Alivisatos, “Semiconductor quantum rods as single molecule fluorescent biological labels,” Nano Letters, vol. 7, no. 1, pp. 179-182, Jan, 2007.
[34] Klimov, V. I. in Annu. Rev. Phys. Chem. Vol. 58 Annual Review of Physical Chemistry 635-673 (2007).
[35] Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706-8715 (1993).
[36] Efros, A. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Soviet physics. Semiconductors 16, 772-775 (1982).
[37] Rossetti, R., Nakahara, S. & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics 79, 1086-1088 (1983).
[38] Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics 80, 4403-4409 (1984).
[39] Hu, J., Wang, L. W., Li, L. S., Yang, W. & Alivisatos, A. P. Semiempirical pseudopotential calculation of electronic states of CdSe quantum rods. J. Phys. Chem. B 106, 2447-2452, (2002).
[40] Wang, F. & Buhro, W. E. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods. J. Am. Chem. Soc. 129, 14381-14387, (2007).
[41] Katz, D. et al. Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett. 89, 086801 (2002).
[42] Li, J. & Wang, L. W. High energy excitations in CdSe quantum rods. Nano Lett. 3, 101-105, (2003).
[43] Kan, S., Mokari, T., Rothenberg, E. & Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2, 155-158, (2003).
[44] Shabaev, A. & Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 4, 1821-1825, (2004).
[45] Steiner, D. et al. Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett. 4, 1073-1077, (2004).
[46] Krahne, R. et al. Physical properties of elongated inorganic nanoparticles. Phys. Rep.-Rev. Sec. Phys. Lett. 501, 75-221, (2011).
[47] Jagtap, S., Chopade, P., Tadepalli, S., Bhalerao, A., & Gosavi, S. (2019). A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 27(1), 90-103.
[48] S.-H. Wei and A. Zunger, Appl. Phys. Lett., 1998, 72, 2011-2013.
[49] L. I. Berger, Semiconductor Materials, CRC Press, 1997.
[50] A. C. Bartnik, F. W. Wise, A. Kigel and E. Lifshitz, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 245424.
[51] B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh and Z. Hens, ACS Nano, 2011, 5, 58–66.
[52] F. Garcıa-Santamarıa, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth and V. I. Klimov, Nano Lett., 2009, 9, 3482-3488.
[53] D. Steiner, D. Dorfs, U. Banin, F. Della Sala, L. Manna and O. Millo, Nano Lett., 2008, 8, 2954–2958.
[54] M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL, 1989.
[55] Zhu, H., & Lian, T. (2012). Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy & Environmental Science, 5(11), 9406-9418.
[56] Chuang, C. H., Lo, S. S., Scholes, G. D. & Burda, C. Charge separation and recombination in CdTe/CdSe core/shell nanocrystals as a function of shell coverage: Probing the onset of the quasi type-II regime. J. Phys. Chem. Lett. 1, 2530-2535, (2010).
[57] Sift, A., Della Sala, F., Menagen, G. & Banin, U. Multiexciton engineering in seeded core/shell nanorods: Transfer from type-I to quasi-type-ll regimes. Nano Lett. 9, 3470-3476, (2009).
[58] Ivanov, S. A. et al. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708-11719, (2007).
[59] Balet, L. P., Ivanov, S. A., Piryatinski, A., Achermann, M. & Klimov, V. I. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett. 4, 1485-1488, (2004).
[60] Nanda, J. et al. Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance. J. Appl. Phys. 99, 034309, (2006).
[61] Sitt, A., Hadar, I. & Banin, U. Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today 8, 494-513, (2013).
[62] Abecassis, B. Three-Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. ChemPhysChem 17, 618-631, (2016).
[63] P. Reiss, M. Protiere, and L. Li, “Core/Shell Semiconductor Nanocrystals,” Small, vol. 5, no. 2, pp. 154-168, Jan 19, 2009.
[64] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science, vol. 292, no. 5524, pp. 2060-2063, Jun 15, 2001.
[65] Wagnière, G. H. On chirality and the universal asymmetry: reflections on image and mirror image; Wiley: New York, 2008.
[66] Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A.; Purcellmilton, F.; Govan, J.; Gun’Ko, Y. K. Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods. Nano Lett. 2015, 15, 2844.
[67] Baimuratov, A. S.; Rukhlenko, I. D.; Gun’Ko, Y. K.; Baranov, A. V.; Fedorov, A. V. Dislocation-induced Chirality of Semiconductor Nanocrystals. Nano Lett. 2015, 15, 1710−1715.
[68] Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S. G.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots. ACS Nano 2013, 7, 11094−11102.
[69] J. Cheng, J. Hao, H. Liu, J. Li, J. Li, X. Zhu, X. Lin, K. Wang, and T. He, ACS Nano, 2018, 126, 5341-5350.
[70] Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Supramolecular Templating of Single and Double Nanohelices of Cadmium Sulfide. Small 2005, 1, 694−697.
[71] Zhou, Y.; Marson, R. L.; Van Anders, G.; Zhu, J.; Ma, G.; Ercius, P.; Sun, K.; Yeom, B.; Glotzer, S. C.; Kotov, N. A. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano 2016, 10, 3248.
[72] J. Zhang, W. Feng, H. Zhang, Z. Wang, H. A. Calcaterra, B. Yeom, P. A. Hu, N. A. Kotov, Nat. Commun. 2016, 7, 10701. Jianlei Han, Jing You, Xianggao Li, Pengfei Duan, Minghua Liu, Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes, Adv. Mater. 2017, 29, 1606509.
[73] Jianlei Han, Jing You, Xianggao Li, Pengfei Duan, Minghua Liu, Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes, Adv. Mater. 2017, 29, 1606509.
[74] H. D. Kim, H.-J. Chung, B. H. Berkeley, and S. S. Kim, “Emerging technologies for the commercialization of AMOLED TVs,” Inf. Display, vol. 25, no. 9, pp. 18-22, 2009.
[75] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature, vol. 515, no. 7525, pp. 96, 2014.
[76] K.-H. Lee, J.-H. Lee, H.-D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, and H. Yang, “Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots,” ACS nano, vol. 8, no. 5, pp. 4893-4901, 2014.
[77] J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe‐Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” Journal of the Society for Information Display, vol. 23, no. 7, pp. 294-305, 2015.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/364764
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Zhou ZM. QUANTUM RODS AND THEIR FUNCTIONAL FILMS FOR DISPLAY[D]. 新加坡. 新加坡国立大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11655006-周子明-电子与电气工程(8239KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周子明]的文章
百度学术
百度学术中相似的文章
[周子明]的文章
必应学术
必应学术中相似的文章
[周子明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。