[1] Swart, I., Liljeroth, P. & Vanmaekelbergh, D. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chem. Rev. 116, 11181-11219, (2016).
[2] Ekimov, A. I. & Onushchenko, A. A. Size quantization of the electron-energy spectrum in a microscopic semiconductor crystal. Jetp Lett. 40, 1136-1139 (1984).
[3] Rossetti, R., Ellison, J. L., Gibson, J. M. & Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80, 4464-4469, (1984).
[4] Barbara Moran, What Are Quantum Dots? MSE spotlight faculty, MSE spotlight research, BU College of Engineering, Tuesday, June 13th, 2017. Link: https://www.bu.edu/eng/2017/06/13/what-are-quantum-dots/.
[5] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science, vol. 292, no. 5524, pp. 2060-2063, Jun 15, 2001.
[6] N. D. Bronstein, L. F. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, R. G. Nuzzo, Acs Nano 2014, 8, 44.
[7] M. Hasegawa, and Y. Hirayama, “Use of quantum rods for display applications,” Journal of the Society for Information Display, vol. 24, no. 5, pp. 286-292, May, 2016.
[8] P. D. Cunningham, J. B. Souza, I. Fedin, C. X. She, B. Lee, and D. V. Talapin, “Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology,” Acs Nano, vol. 10, no. 6, pp. 5769-5781, Jun, 2016.
[9] T. Aubert, L. Paangetic, M. Mohammadimasoudi, K. Neyts, J. Beeckman, C. Clasen, and Z. Hens, “Large-Scale and Electroswitchable Polarized Emission from Semiconductor Nanorods Aligned in Polymeric Nanofibers,” Acs Photonics, vol. 2, no. 5, pp. 583-588, May, 2015.
[10] M. Mohammadimasoudi, J. Beeckman, Z. Hens, and K. Neyts, “Hybrid fluorescent layer emitting polarized light,” Apl Materials, vol. 5, no. 7, Jul, 2017.
[11] M. Mohammadimasoudi, Z. Hens, and K. Neyts, “Full alignment of dispersed colloidal nanorods by alternating electric fields,” Rsc Advances, vol. 6, no. 61, pp. 55736-55744, 2016.
[12] H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-Tunable Light-Emitting Device Based on the Mixture of CdSe Nanorods and Dots Embedded in Liquid-Crystal Cells,” Journal of Physical Chemistry C, vol. 114, no. 17, pp. 7995-7998, May, 2010.
[13] T. Wang, X. R. Wang, D. LaMontagne, Z. W. Wang, and Y. C. Cao, “Macroscale Lateral Alignment of Semiconductor Nanorods into Freestanding Thin Films,” Journal of the American Chemical Society, vol. 135, no. 16, pp. 6022-6025, Apr, 2013.
[14] A. Rizzo, C. Nobile, M. Mazzeo, M. De Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna, and G. Gigli, “Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface,” Acs Nano, vol. 3, no. 6, pp. 1506-1512, Jun, 2009.
[15] R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, and H. Weller, “Polarized-light-emitting quantum-rod diodes,” Advanced Materials, vol. 17, no. 11, pp. 1436-1439, Jun, 2005.
[16] P. Liu, S. Singh, Y. Guo, J.-J. Wang, H. Xu, C. Silien, N. Liu, and K. M. Ryan, “Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers,” Scientific Reports, vol. 7, 43884, 2017.
[17] Y. Gao, T. Van Duong, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, X. W. Sun, H. Sun, and H. V. Demir, “Observation of polarized gain from aligned colloidal nanorods,” Nanoscale, vol. 7, no. 15, pp. 6481-6486, 2015, 2015.
[18] M. Zavelani-Rossi, R. Krahne, G. Della Valle, S. Longhi, I. R. Franchini, S. Girardo, F. Scotognella, D. Pisignano, L. Manna, G. Lanzani, and F. Tassone, “Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition,” Laser & Photonics Reviews, vol. 6, no. 5, pp. 678-683, Sep, 2012.
[19] M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale, vol. 2, no. 6, pp. 931-935, 2010, 2010.
[20] B. Moller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Mode control by nanoengineering light emitters in spherical microcavities,” Applied Physics Letters, vol. 83, no. 13, pp. 2686-2688, Sep, 2003.
[21] F. Qiao, W. Xu, M. Liu, J. Yang, X. J. Cui, Q. Wang, J. M. Bian, and D. H. Kim, “Effect of Cd-phosphonate complex on the self-assembly structure of colloidal nanorods,” Materials Letters, vol. 180, pp. 85-88, Oct, 2016.
[22] M. Wang, J. Jiang, J. Shi, and L. Guo, “CdS/CdSe Core-Shell Nanorod Arrays: Energy Level Alignment and Enhanced Photoelectrochemical Performance,” Acs Applied Materials & Interfaces, vol. 5, no. 10, pp. 4021-4025, May 22, 2013.
[23] L. Bian, X. W. Zhang, C. Y. Luan, J. A. Zapien, X. Z. Zhang, Y. M. Wu, and J. S. Jie, “Hole-induced large-area homoepitaxial growth of CdSe nanowire arrays for photovoltaic application,” Journal of Materials Chemistry A, vol. 1, no. 21, pp. 6313-6319, 2013.
[24] D. Sahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” Journal of Applied Physics, vol. 110, no. 3, 033108, Aug 1, 2011.
[25] L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for Luminescent Solar Concentrators,” Nano Letters, vol. 15, no. 2, pp. 1315-1323, Feb, 2015.
[26] N. D. Bronstein, L. F. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent Solar Concentration with Semiconductor Nanorods and Transfer-Printed Micro-Silicon Solar Cells,” Acs Nano, vol. 8, no. 1, pp. 44-53, Jan, 2014.
[27] F. Qiu, Z. J. Han, J. J. Peterson, M. Y. Odoi, K. L. Sowers, and T. D. Krauss, “Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles,” Nano Letters, vol. 16, no. 9, pp. 5347-5352, Sep, 2016.
[28] H. J. Lv, T. P. A. Ruberu, V. E. Fleischauer, W. W. Brennessel, M. L. Neidig, and R. Eisenberg, “Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes,” Journal of the American Chemical Society, vol. 138, no. 36, pp. 11654-11663, Sep, 2016.
[29] P. Kalisman, Y. Nakibli, and L. Amirav, “Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods,” Jove-Journal of Visualized Experiments, no. 108, pp. 9, Feb, 2016.
[30] S. Deka, A. Quarta, M. G. Lupo, A. Falqui, S. Boninelli, C. Giannini, G. Morello, M. De Giorgi, G. Lanzani, C. Spinella, R. Cingolani, T. Pellegrino, and L. Manna, “CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes,” Journal of the American Chemical Society, vol. 131, no. 8, pp. 2948-2958, Mar, 2009.
[31] K. T. Yong, I. Roy, H. E. Pudavar, E. J. Bergey, K. M. Tramposch, M. T. Swihart, and P. N. Prasad, “Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods,” Advanced Materials, vol. 20, no. 8, pp. 1412-1417, Apr, 2008.
[32] K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. L. He, M. T. Swihart, A. Maitra, and P. N. Prasad, “Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells,” Nano Letters, vol. 7, no. 3, pp. 761-765, Mar, 2007.
[33] A. H. Fu, W. W. Gu, B. Boussert, K. Koski, D. Gerion, L. Manna, M. Le Gros, C. A. Larabell, and A. P. Alivisatos, “Semiconductor quantum rods as single molecule fluorescent biological labels,” Nano Letters, vol. 7, no. 1, pp. 179-182, Jan, 2007.
[34] Klimov, V. I. in Annu. Rev. Phys. Chem. Vol. 58 Annual Review of Physical Chemistry 635-673 (2007).
[35] Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706-8715 (1993).
[36] Efros, A. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Soviet physics. Semiconductors 16, 772-775 (1982).
[37] Rossetti, R., Nakahara, S. & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics 79, 1086-1088 (1983).
[38] Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics 80, 4403-4409 (1984).
[39] Hu, J., Wang, L. W., Li, L. S., Yang, W. & Alivisatos, A. P. Semiempirical pseudopotential calculation of electronic states of CdSe quantum rods. J. Phys. Chem. B 106, 2447-2452, (2002).
[40] Wang, F. & Buhro, W. E. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods. J. Am. Chem. Soc. 129, 14381-14387, (2007).
[41] Katz, D. et al. Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett. 89, 086801 (2002).
[42] Li, J. & Wang, L. W. High energy excitations in CdSe quantum rods. Nano Lett. 3, 101-105, (2003).
[43] Kan, S., Mokari, T., Rothenberg, E. & Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2, 155-158, (2003).
[44] Shabaev, A. & Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 4, 1821-1825, (2004).
[45] Steiner, D. et al. Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett. 4, 1073-1077, (2004).
[46] Krahne, R. et al. Physical properties of elongated inorganic nanoparticles. Phys. Rep.-Rev. Sec. Phys. Lett. 501, 75-221, (2011).
[47] Jagtap, S., Chopade, P., Tadepalli, S., Bhalerao, A., & Gosavi, S. (2019). A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 27(1), 90-103.
[48] S.-H. Wei and A. Zunger, Appl. Phys. Lett., 1998, 72, 2011-2013.
[49] L. I. Berger, Semiconductor Materials, CRC Press, 1997.
[50] A. C. Bartnik, F. W. Wise, A. Kigel and E. Lifshitz, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 245424.
[51] B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh and Z. Hens, ACS Nano, 2011, 5, 58–66.
[52] F. Garcıa-Santamarıa, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth and V. I. Klimov, Nano Lett., 2009, 9, 3482-3488.
[53] D. Steiner, D. Dorfs, U. Banin, F. Della Sala, L. Manna and O. Millo, Nano Lett., 2008, 8, 2954–2958.
[54] M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL, 1989.
[55] Zhu, H., & Lian, T. (2012). Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy & Environmental Science, 5(11), 9406-9418.
[56] Chuang, C. H., Lo, S. S., Scholes, G. D. & Burda, C. Charge separation and recombination in CdTe/CdSe core/shell nanocrystals as a function of shell coverage: Probing the onset of the quasi type-II regime. J. Phys. Chem. Lett. 1, 2530-2535, (2010).
[57] Sift, A., Della Sala, F., Menagen, G. & Banin, U. Multiexciton engineering in seeded core/shell nanorods: Transfer from type-I to quasi-type-ll regimes. Nano Lett. 9, 3470-3476, (2009).
[58] Ivanov, S. A. et al. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708-11719, (2007).
[59] Balet, L. P., Ivanov, S. A., Piryatinski, A., Achermann, M. & Klimov, V. I. Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett. 4, 1485-1488, (2004).
[60] Nanda, J. et al. Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance. J. Appl. Phys. 99, 034309, (2006).
[61] Sitt, A., Hadar, I. & Banin, U. Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today 8, 494-513, (2013).
[62] Abecassis, B. Three-Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. ChemPhysChem 17, 618-631, (2016).
[63] P. Reiss, M. Protiere, and L. Li, “Core/Shell Semiconductor Nanocrystals,” Small, vol. 5, no. 2, pp. 154-168, Jan 19, 2009.
[64] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science, vol. 292, no. 5524, pp. 2060-2063, Jun 15, 2001.
[65] Wagnière, G. H. On chirality and the universal asymmetry: reflections on image and mirror image; Wiley: New York, 2008.
[66] Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A.; Purcellmilton, F.; Govan, J.; Gun’Ko, Y. K. Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods. Nano Lett. 2015, 15, 2844.
[67] Baimuratov, A. S.; Rukhlenko, I. D.; Gun’Ko, Y. K.; Baranov, A. V.; Fedorov, A. V. Dislocation-induced Chirality of Semiconductor Nanocrystals. Nano Lett. 2015, 15, 1710−1715.
[68] Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S. G.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots. ACS Nano 2013, 7, 11094−11102.
[69] J. Cheng, J. Hao, H. Liu, J. Li, J. Li, X. Zhu, X. Lin, K. Wang, and T. He, ACS Nano, 2018, 126, 5341-5350.
[70] Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Supramolecular Templating of Single and Double Nanohelices of Cadmium Sulfide. Small 2005, 1, 694−697.
[71] Zhou, Y.; Marson, R. L.; Van Anders, G.; Zhu, J.; Ma, G.; Ercius, P.; Sun, K.; Yeom, B.; Glotzer, S. C.; Kotov, N. A. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano 2016, 10, 3248.
[72] J. Zhang, W. Feng, H. Zhang, Z. Wang, H. A. Calcaterra, B. Yeom, P. A. Hu, N. A. Kotov, Nat. Commun. 2016, 7, 10701. Jianlei Han, Jing You, Xianggao Li, Pengfei Duan, Minghua Liu, Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes, Adv. Mater. 2017, 29, 1606509.
[73] Jianlei Han, Jing You, Xianggao Li, Pengfei Duan, Minghua Liu, Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes, Adv. Mater. 2017, 29, 1606509.
[74] H. D. Kim, H.-J. Chung, B. H. Berkeley, and S. S. Kim, “Emerging technologies for the commercialization of AMOLED TVs,” Inf. Display, vol. 25, no. 9, pp. 18-22, 2009.
[75] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature, vol. 515, no. 7525, pp. 96, 2014.
[76] K.-H. Lee, J.-H. Lee, H.-D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, and H. Yang, “Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots,” ACS nano, vol. 8, no. 5, pp. 4893-4901, 2014.
[77] J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe‐Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” Journal of the Society for Information Display, vol. 23, no. 7, pp. 294-305, 2015.
修改评论