[1] VOGAN A A, HIGGS P G. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species[J]. Biology Direct, 2011, 6(1): 1-14.
[2] KOONIN E V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions[J]. F1000Res, 2016, 5.
[3] LABRIE S J, SAMSON J E, MOINEAU S. Bacteriophage resistance mechanisms[J]. Nature Reviews Microbiology, 2010, 8(5): 317-327.
[4] DORON S, MELAMED S, OFIR G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379): eaar4120.
[5] PAWLUK A, DAVIDSON A R, MAXWELL K L. Anti-CRISPR: discovery, mechanism and function[J]. Nat Rev Microbiol, 2017, 16(1): 12-17.
[6] HAMPTON H G, WATSON B N, FINERAN P C. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790): 327-336.
[7] KOONIN E V, MAKAROVA K S. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes[J]. RNA Biol, 2013, 10(5): 679-686.
[8] VAN DER OOST J, WESTRA E R, JACKSON R N, et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2014, 12(7): 479-492.
[9] MARRAFFINI L A. CRISPR-Cas immunity in prokaryotes[J]. Nature, 2015, 526(7571): 55-61.
[10] MOHANRAJU P, MAKAROVA K S, ZETSCHE B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299): aad5147.
[11] DEVEAU H, GARNEAU J E, MOINEAU S. CRISPR/Cas system and its role in phage-bacteria interactions[J]. Annu Rev Microbiol, 2010, 64: 475-493.
[12] SEMENOVA E, JORE M M, DATSENKO K A, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence[J]. Proc Natl Acad Sci U S A, 2011, 108(25): 10098-10103.
[13] DAVIDSON A R, LU W T, STANLEY S Y, et al. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems[J]. Annu Rev Biochem, 2020, 89: 309-332.
[14] STANLEY S Y, MAXWELL K L. Phage-Encoded Anti-CRISPR Defenses[J]. Annu Rev Genet, 2018, 52: 445-464.
[15] HWANG S, MAXWELL K L. Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems[J]. The CRISPR Journal, 2019, 2(1): 23-30.
[16] BONDY-DENOMY J, PAWLUK A, MAXWELL K L, et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432): 429-432.
[17] TRASANIDOU D, GEROS A S, MOHANRAJU P, et al. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs[J]. FEMS Microbiol Lett, 2019, 366(9).
[18] PAWLUK A, BONDY-DENOMY J, CHEUNG V H, et al. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa[J]. mBio, 2014, 5(2): e00896.
[19] BONDY-DENOMY J, DAVIDSON A R, DOUDNA J A, et al. A Unified Resource for Tracking Anti-CRISPR Names[J]. CRISPR J, 2018, 1: 304-305.
[20] CAZARES A, FIGUEROA W, CAZARES D. Diversity of microbial defence systems[J]. Nature Reviews Microbiology, 2022, 20(4): 191-191.
[21] BONDY-DENOMY J, GARCIA B, STRUM S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins[J]. Nature, 2015, 526(7571): 136-139.
[22] WIEGAND T, KARAMBELKAR S, BONDY-DENOMY J, et al. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression[J]. Annu Rev Microbiol, 2020, 74: 21-37.
[23] THAVALINGAM A, CHENG Z, GARCIA B, et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2[J]. Nat Commun, 2019, 10(1): 2806.
[24] HIRSCHI M, LU W T, SANTIAGO-FRANGOS A, et al. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex[J]. Nat Commun, 2020, 11(1): 2730.
[25] LU W T, TROST C N, MULLER-ESPARZA H, et al. Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically[J]. Nucleic Acids Res, 2021, 49(6): 3381-3393.
[26] OSUNA B A, KARAMBELKAR S, MAHENDRA C, et al. Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes[J]. Cell Host Microbe, 2020, 28(1): 31-40 e39.
[27] ATHUKORALAGE J S, MCMAHON S A, ZHANG C, et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity[J]. Nature, 2020, 577(7791): 572-575.
[28] PAWLUK A, STAALS R H, TAYLOR C, et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J]. Nat Microbiol, 2016, 1(8): 16085.
[29] MARINO N D, ZHANG J Y, BORGES A L, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors[J]. Science, 2018, 362(6411): 240-242.
[30] PAWLUK A, AMRANI N, ZHANG Y, et al. Naturally Occurring Off-Switches for CRISPR-Cas9[J]. Cell, 2016, 167(7): 1829-1838 e1829.
[31] YIN Y, YANG B, ENTWISTLE S. Bioinformatics identification of anti-CRISPR loci by using homology, guilt-by-association, and CRISPR self-targeting spacer approaches[J]. Msystems, 2019, 4(5): e00455-00419.
[32] PINILLA-REDONDO R, SHEHREEN S, MARINO N D, et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements[J]. Nat Commun, 2020, 11(1): 5652.
[33] LEON L M, PARK A E, BORGES A L, et al. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa[J]. Nucleic Acids Res, 2021, 49(4): 2114-2125.
[34] BIRKHOLZ N, FAGERLUND R D, SMITH L M, et al. The autoregulator Aca2 mediates anti-CRISPR repression[J]. Nucleic Acids Res, 2019, 47(18): 9658-9665.
[35] STANLEY S Y, BORGES A L, CHEN K H, et al. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription[J]. Cell, 2019, 178(6): 1452-1464 e1413.
[36] OSUNA B A, KARAMBELKAR S, MAHENDRA C, et al. Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor[J]. Cell Host Microbe, 2020, 28(1): 23-30 e25.
[37] WATTERS K E, SHIVRAM H, FELLMANN C, et al. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes[J]. Proc Natl Acad Sci U S A, 2020, 117(12): 6531-6539.
[38] RAUCH B J, SILVIS M R, HULTQUIST J F, et al. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins[J]. Cell, 2017, 168(1-2): 150-158 e110.
[39] HYNES A P, ROUSSEAU G M, AGUDELO D, et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins[J]. Nat Commun, 2018, 9(1): 2919.
[40] KA D, AN S Y, SUH J Y, et al. Crystal structure of an anti-CRISPR protein, AcrIIA1[J]. Nucleic Acids Res, 2018, 46(1): 485-492.
[41] FUCHSBAUER O, SWUEC P, ZIMBERGER C, et al. Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6[J]. Molecular Cell, 2019, 76(6): 922-937.e927.
[42] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. JOURNAL OF BACTERIOLOGY, 1987, 169(12): 5429-5433.
[43] JANSEN R, EMBDEN J D V, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575.
[44] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174-182.
[45] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2): 67-83.
[46] BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(Pt 8): 2551-2561.
[47] POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653-663.
[48] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[49] BROUNS S J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964.
[50] GARNEAU J E, DUPUIS M-È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71.
[51] MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843-1845.
[52] WESTRA E R, VAN ERP P B, KUNNE T, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3[J]. Mol Cell, 2012, 46(5): 595-605.
[53] STERNBERG S H, LAFRANCE B, KAPLAN M, et al. Conformational control of DNA target cleavage by CRISPR–Cas9[J]. Nature, 2015, 527(7576): 110-113.
[54] JIANG W, SAMAI P, MARRAFFINI L A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity[J]. Cell, 2016, 164(4): 710-721.
[55] HALE C R, ZHAO P, OLSON S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell, 2009, 139(5): 945-956.
[56] SASHITAL D G, WIEDENHEFT B, DOUDNA J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Molecular Cell, 2012, 46(5): 606-615.
[57] HORVATH P, BARRANGOU R. CRISPR/Cas, the Immune System of Bacteria and Archaea[J]. Science, 2010, 327(5962): 167-170.
[58] HAFT D H, SELENGUT J, MONGODIN E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes[J]. PLoS Comput Biol, 2005, 1(6): e60.
[59] KUNIN V, SOREK R, HUGENHOLTZ P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biology, 2007, 8(4): 1-7.
[60] MOJICA F J M, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3): 733-740.
[61] JOHN VAN DER OOST M M J, EDZE R. WESTRA, MAGNUS LUNDGREN AND STAN J.J. BROUNS. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends Biochem Sci, 2009, 34(8): 401-407.
[62] JIA N, PATEL D J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins[J]. Nat Rev Mol Cell Biol, 2021, 22(8): 563-579.
[63] FINERAN P C, CHARPENTIER E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information[J]. Virology, 2012, 434(2): 202-209.
[64] LEVY A, GOREN M G, YOSEF I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA[J]. Nature, 2015, 520(7548): 505-510.
[65] DUPUIS M-È, VILLION M, MAGADáN A H, et al. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance[J]. Nature Communications, 2013, 4(1): 1-7.
[66] ARSLAN Z, HERMANNS V, WURM R, et al. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system[J]. Nucleic Acids Res, 2014, 42(12): 7884-7893.
[67] NUNEZ J K, LEE A S, ENGELMAN A, et al. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nature, 2015, 519(7542): 193-198.
[68] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607.
[69] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
[70] WIEDENHEFT B, VAN DUIJN E, BULTEMA J B, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions[J]. Proceedings of the National Academy of Sciences, 2011, 108(25): 10092-10097.
[71] STERNBERG S H, REDDING S, JINEK M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67.
[72] BARRANGOU R, HORVATH P. A decade of discovery: CRISPR functions and applications[J]. Nature microbiology, 2017, 2(7): 1-9.
[73] KOONIN E V, MAKAROVA K S, WOLF Y I. Evolutionary genomics of defense systems in archaea and bacteria[J]. Annual review of microbiology, 2017, 71: 233.
[74] KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37: 67-78.
[75] ADDISON V. WRIGHT J K N E, 1 AND JENNIFER A. DOUDNA1,2,3,4,5,6,*. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering[J]. Cell, 2016, 37: 61-68.
[76] KIRA S. MAKAROVA Y I W, AND EUGENE V. KOONIN*. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?[J]. The CRISPR Journal, 2018, 16(3): 184-192.
[77] MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
[78] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
[79] MAKAROVA K S, KOONIN E V. Annotation and Classification of CRISPR-Cas Systems[J]. Methods Mol Biol, 2015, 1311: 47-75.
[80] CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al. Classification and evolution of type II CRISPR-Cas systems[J]. Nucleic Acids Res, 2014, 42(10): 6091-6105.
[81] XIAO Y, LUO M, DOLAN A E, et al. Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J]. Science, 2018, 361(6397): eaat0839.
[82] SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems[J]. Mol Cell, 2015, 60(3): 385-397.
[83] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[84] JINEK M, JIANG F, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997.
[85] ANDERS C, NIEWOEHNER O, DUERST A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513(7519): 569-573.
[86] NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 162(5): 1113-1126.
[87] HIRANO H, GOOTENBERG J S, HORII T, et al. Structure and Engineering of Francisella novicida Cas9[J]. Cell, 2016, 164(5): 950-961.
[88] SUN W, YANG J, CHENG Z, et al. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States[J]. Mol Cell, 2019, 76(6): 938-952 e935.
[89] HIRANO S, ABUDAYYEH O O, GOOTENBERG J S, et al. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9[J]. Nature Communications, 2019, 10(1): 1-11.
[90] GAO C. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
[91] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[92] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
[93] GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences, 2012, 109(39): E2579-E2586.
[94] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[95] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844.
[96] NAKAMURA M, GAO Y, DOMINGUEZ A A, et al. CRISPR technologies for precise epigenome editing[J]. Nature Cell Biology, 2021, 23(1): 11-22.
[97] COLLIAS D, BEISEL C L. CRISPR technologies and the search for the PAM-free nuclease[J]. Nature Communications, 2021, 12(1): 1-12.
[98] ZETSCHE B, HEIDENREICH M, MOHANRAJU P, et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array[J]. Nature Biotechnology, 2017, 35(1): 31-34.
[99] MING M, REN Q, PAN C, et al. CRISPR–Cas12b enables efficient plant genome engineering[J]. Nature plants, 2020, 6(3): 202-208.
[100] STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1): 1-8.
[101] LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and gene editing technologies[J]. Mol Cell, 2022, 82(2): 333-347.
[102] ÖZCAN A, KRAJESKI R, IOANNIDI E, et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11[J]. Nature, 2021, 597(7878): 720-725.
[103] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
[104] KNOTT G J, DOUDNA J A. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405): 866-869.
[105] DOUDNA J A. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236.
[106] LIANG P, XU Y, ZHANG X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5): 363-372.
[107] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
[108] BARRANGOU R, VAN PIJKEREN J P. Exploiting CRISPR-Cas immune systems for genome editing in bacteria[J]. Curr Opin Biotechnol, 2016, 37: 61-68.
[109] ADLI M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911.
[110] KLOMPE S E, VO P L H, HALPIN-HEALY T S, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219-225.
[111] CSORGO B, LEON L M, CHAU-LY I J, et al. A compact Cascade-Cas3 system for targeted genome engineering[J]. Nat Methods, 2020, 17(12): 1183-1190.
[112] NAMBIAR T S, BAUDRIER L, BILLON P, et al. CRISPR-based genome editing through the lens of DNA repair[J]. Molecular Cell, 2022, 82(2): 348-388.
[113] KIM D Y, LEE J M, MOON S B, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J]. Nature Biotechnology, 2022, 40(1): 94-102.
[114] PETRI K, ZHANG W, MA J, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nature Biotechnology, 2021: 1-5.
[115] KANNAN S, ALTAE-TRAN H, JIN X, et al. Compact RNA editors with small Cas13 proteins[J]. Nature Biotechnology, 2021: 1-4.
[116] CHEN Y-C. CRISPR based genome editing and removal of human viruses [M]. Progress in molecular biology and translational science. Elsevier. 2021: 93-116.
[117] MARINO N D, PINILLA-REDONDO R, CSORGO B, et al. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies[J]. Nat Methods, 2020, 17(5): 471-479.
[118] AN S Y, KA D, KIM I, et al. Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5[J]. Nucleic Acids Res, 2020, 48(13): 7584-7594.
[119] SHIN J, JIANG F, LIU J-J, et al. Disabling Cas9 by an anti-CRISPR DNA mimic[J]. SCIENCE ADVANCES, 2017, 3(7): e1701620.
[120] LIN P, QIN S, PU Q, et al. CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells[J]. Molecular Cell, 2020, 78(5): 850-861. e855.
[121] SMARGON A A, COX D B T, PYZOCHA N K, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4): 618-630 e617.
[122] GREENE A C. CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense[J]. Trends Biotechnol, 2018, 36(2): 127-130.
[123] PURSEY E, SUNDERHAUF D, GAZE W H, et al. CRISPR-Cas antimicrobials: Challenges and future prospects[J]. PLoS Pathog, 2018, 14(6): e1006990.
[124] LI M, GONG L, CHENG F, et al. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems[J]. Science, 2021, 372(6541): eabe5601.
[125] MOHANRAJU P, SAHA C, VAN BAARLEN P, et al. Alternative functions of CRISPR-Cas systems in the evolutionary arms race[J]. Nature Reviews Microbiology, 2022: 1-14.
[126] HE F, BHOOBALAN-CHITTY Y, VAN L B, et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype ID immunity[J]. Nature microbiology, 2018, 3(4): 461-469.
[127] LIU H, ZHU Y, LU Z, et al. Structural basis of Staphylococcus aureus Cas9 inhibition by AcrIIA14[J]. Nucleic Acids Research, 2021, 49(11): 6587-6595.
[128] YANG L, ZHANG L, YIN P, et al. Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24[J]. Nat Commun, 2022, 13(1): 1931.
[129] SMYTH M, MARTIN J. x Ray crystallography[J]. Molecular Pathology, 2000, 53(1): 8.
[130] 马礼敦. X 射线晶体学的百年辉煌[J]. 物理学进展, 2014, 34(2): 47-117.
[131] 苏纪勇. 蛋白质晶体结构解析原理与技术[M]. 北京大学出版社, 2020.
[132] HOLM L, ROSENSTROM P. Dali server: conservation mapping in 3D[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W545-549.
[133] LUBKOWSKI* D M H A J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis[J]. Nucleic Acids Research, 2002, Vol. 30, No. 10 e43.
[134] ADAMS P D, AFONINE P V, BUNKOCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 2): 213-221.
[135] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
[136] SELLARS L E, BRYANT J A, SANCHEZ-ROMERO M A, et al. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12[J]. BMC Microbiol, 2017, 17(1): 170.
[137] SALAMOV V S A, SOLOVYEVAND A. Automatic annotation of microbial genomes and metagenomic sequences[J]. Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies; Li, RW, Ed, 2011: 61-78.
[138] BRáZDA V, KOLOMAZNíK J, LýSEK J, et al. Palindrome analyser–a new web-based server for predicting and evaluating inverted repeats in nucleotide sequences[J]. Biochemical and Biophysical Research Communications, 2016, 478(4): 1739-1745.
[139] CHAYEN N E, SARIDAKIS E. Protein crystallization: from purified protein to diffraction-quality crystal[J]. Nature Methods, 2008, 5(2): 147-153.
[140] AKARSU H, BORDES P, MANSOUR M, et al. TASmania: a bacterial toxin-antitoxin systems database[J]. PLOS Computational Biology, 2019, 15(4): e1006946.
[141] YAMAGUCHI Y, PARK J-H, INOUYE M. Toxin-antitoxin systems in bacteria and archaea[J]. Annual Review of Genetics, 2011, 45(1): 61-79.
[142] LAVERY R, MOAKHER M, MADDOCKS J H, et al. Conformational analysis of nucleic acids revisited: Curves+[J]. Nucleic Acids Res, 2009, 37(17): 5917-5929.
[143] YELLA V R, BHIMSARIA D, GHOSHDASTIDAR D, et al. Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif[J]. Nucleic Acids Res, 2018, 46(22): 11883-11897.
[144] PéREZ-MARTíN J, ROJO F, DE LORENZO V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression[J]. Microbiological reviews, 1994, 58(2): 268-290.
修改评论