中文版 | English
题名

Aca 蛋白介导 Anti-CRISPR 抑制的分子机制研究

其他题名
STUDY OF MOLECULAR MECHANISM OF ACA PROTEINS MEDIATED ANTI-CRISPR REPRESSION
姓名
姓名拼音
LIU Yanhong
学号
11849495
学位类型
博士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
黄鸿达
导师单位
生物系
论文答辩日期
2022-05-16
论文提交日期
2022-08-07
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

CRISPR-Cas系统是原核生物进化出来的用于对抗外源可移动遗传元件的获得性免疫系统。同时,外源核酸进化出了Anti-CRISPR(Acr)蛋白来对抗宿主菌的CRISPR-Cas系统。Acr蛋白种类繁多,在序列和结构上没有共同特征,然而生物信息学分析发现大多数acr基因都位于保守的Anti-CRISPR-associated(aca)基因的上游。Aca基因编码的Aca蛋白是很保守的,因此可以用来识别新的acr基因。目前为止已经鉴定出了10个Aca蛋白家族。Aca1和Aca2蛋白可以结合acr-aca操纵子启动子区的反向重复序列,进而抑制acr基因的转录,这揭示了Aca蛋白作为抑制子的功能,并提示它可以作为一种潜在的Anti-anti-CRISPR机理被开发利用。另外,这种抑制因子的自调节机制已经被一些Aca-Acr融合蛋白所利用,比如AcrIIA1及其同源物AcrIIA6,AcrIIA13-15以及AcrIF24。这些蛋白都包含一个N末端的,作为acr启动子抑制因子的HTH结构域,和一个起Anti-CRISPR作用的C末端区域,表明这些Acrs具有Acr和Aca蛋白的双重作用,暗示了更加广泛的Anti-anti-CRISPR机制。有趣的是在一些细菌的自身基因组中也发现了Aca蛋白的同源基因,提示细菌宿主利用了这种Anti-anti-CRISPR机理来拮抗潜在的噬菌体。在使用CRISPR-Cas基因编辑工具对细菌基因组进行编辑时,细菌体内的原噬菌体可能通过自身表达的Acr蛋白对宿主的基因组编辑起抑制作用。最近人们利用外源表达Aca1蛋白,克服了Acr蛋白对CRISPR-Cas3编辑活性的抑制,从而提高了编辑效率,这是Aca的Anti-anti-CRISPR机理被应用于基因编辑的一个例子,暗示了Aca蛋白在基因编辑领域的重要应用价值。Aca蛋白的抑制子功能以及Anti-anti-CRISPR机理均依赖于它与acr-aca启动子区反向重复DNA序列的结合,但是Aca蛋白与这些DNA序列结合的分子机制还不清楚。

本论文计划利用生物化学和结构生物学手段阐明Aca蛋白介导Anti-CRISPR抑制的分子机制。本研究首先使用大肠杆菌异源表达的方法成功表达纯化出了铜绿假单胞菌噬菌体JBD30编码的Aca1蛋白和果胶杆菌原噬菌体ZF40编码的Aca2蛋白,随后根据文献报道设计合成了不同长度的DNA底物,与纯化好的Aca1和Aca2蛋白混合孵育形成蛋白-DNA复合物。接下来将单独的Aca蛋白以及Aca蛋白-DNA复合物进行晶体生长。生长好的晶体进行X-射线衍射数据的收集,首先使用Se-Met标记的方法获得了初始相位,随后使用分子置换的方法分别解析了Apo-Aca1和Apo-Aca2蛋白的结构以及Aca1-19 bp JBD30 IR2 DNA和Aca2-26 bp ZF40 IR1 DNA的复合物结构。

本论文首先对Apo-Aca1和Apo-Aca2蛋白的结构进行分析,结构分析显示Aca1和Aca2蛋白都包含一个保守的HTH DNA结合结构域并通过不同的分子间作用模式形成同源二聚体。虽然Aca1和Aca2蛋白具有不同的二聚化机制,但是结构和序列的保守性表明二聚化是Aca1和Aca2家族蛋白的固有特征。随后重点分析了Aca1和Aca2蛋白与其特异性DNA底物的复合物结构。复合物结构显示Aca1二聚体结合19 bp操纵子DNA后将DNA整体弯曲了42°,这种弯曲依赖于DNA侧翼区和间隔区的相互作用;而Aca2主要与26 bp操纵子DNA的核心基序进行特异性识别,因此DNA没有发生明显的弯曲。详细的结构分析表明,虽然Aca1和Aca2蛋白采用不同的二聚机制,识别不同的底物DNA,但两者都利用其HTH结构域的a3螺旋上保守的底物识别氨基酸特异性识别各自的底物DNA,进而抑制下游基因的转录。本研究用ITC实验对参与特异性识别DNA的氨基酸进行了突变验证。另外本研究还设计了体内荧光报告实验验证了Aca1和Aca2的关键氨基酸对acr-aca启动子的抑制作用。将Aca1和Aca2的结构在Dali数据库中进行了搜索,结果显示Aca1的结构与V. cholerae和E. coli中的抗毒素和抑制因子HigA2和MqsA具有相似性,暗示Aca1家族可能起源于抗毒素因子。而Aca2的结构与YdiL和SO_3848具有很高相似性,表明这两个未知功能的蛋白可能像Aca2蛋白一样起转录抑制因子的作用。本研究对YdiL和SO_3848蛋白的编码基因的基因组背景进行了分析,遗憾的是并没有找到结合的启动子序列。

总的来说,本研究首次解析了Aca家族蛋白与底物DNA的复合物结构,揭示了Aca蛋白介导的Anti-CRISPR抑制的结构基础。揭示了Aca1和Aca2家族保守的二聚化机制,虽然两个家族蛋白采用不同的二聚化方式,但具有保守的底物识别位点,因此可以识别各自的底物DNA进而发挥抑制因子的作用。有助于理解其它Aca家族(Aca3-Aca10家族)蛋白的作用机制。另外,本研究的结构分析可以作为模板设计更强的Aca抑制子(与靶DNA有更高的亲和力),这为包括基因编辑在内的不同应用提供更强大的Anti-anti-CRISPR抑制机制,为在应用中进一步准确调控CRISPR-Cas系统提供研究基础。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表


[1] VOGAN A A, HIGGS P G. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species[J]. Biology Direct, 2011, 6(1): 1-14.
[2] KOONIN E V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions[J]. F1000Res, 2016, 5.
[3] LABRIE S J, SAMSON J E, MOINEAU S. Bacteriophage resistance mechanisms[J]. Nature Reviews Microbiology, 2010, 8(5): 317-327.
[4] DORON S, MELAMED S, OFIR G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379): eaar4120.
[5] PAWLUK A, DAVIDSON A R, MAXWELL K L. Anti-CRISPR: discovery, mechanism and function[J]. Nat Rev Microbiol, 2017, 16(1): 12-17.
[6] HAMPTON H G, WATSON B N, FINERAN P C. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790): 327-336.
[7] KOONIN E V, MAKAROVA K S. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes[J]. RNA Biol, 2013, 10(5): 679-686.
[8] VAN DER OOST J, WESTRA E R, JACKSON R N, et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2014, 12(7): 479-492.
[9] MARRAFFINI L A. CRISPR-Cas immunity in prokaryotes[J]. Nature, 2015, 526(7571): 55-61.
[10] MOHANRAJU P, MAKAROVA K S, ZETSCHE B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299): aad5147.
[11] DEVEAU H, GARNEAU J E, MOINEAU S. CRISPR/Cas system and its role in phage-bacteria interactions[J]. Annu Rev Microbiol, 2010, 64: 475-493.
[12] SEMENOVA E, JORE M M, DATSENKO K A, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence[J]. Proc Natl Acad Sci U S A, 2011, 108(25): 10098-10103.
[13] DAVIDSON A R, LU W T, STANLEY S Y, et al. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems[J]. Annu Rev Biochem, 2020, 89: 309-332.
[14] STANLEY S Y, MAXWELL K L. Phage-Encoded Anti-CRISPR Defenses[J]. Annu Rev Genet, 2018, 52: 445-464.
[15] HWANG S, MAXWELL K L. Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems[J]. The CRISPR Journal, 2019, 2(1): 23-30.
[16] BONDY-DENOMY J, PAWLUK A, MAXWELL K L, et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432): 429-432.
[17] TRASANIDOU D, GEROS A S, MOHANRAJU P, et al. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs[J]. FEMS Microbiol Lett, 2019, 366(9).
[18] PAWLUK A, BONDY-DENOMY J, CHEUNG V H, et al. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa[J]. mBio, 2014, 5(2): e00896.
[19] BONDY-DENOMY J, DAVIDSON A R, DOUDNA J A, et al. A Unified Resource for Tracking Anti-CRISPR Names[J]. CRISPR J, 2018, 1: 304-305.
[20] CAZARES A, FIGUEROA W, CAZARES D. Diversity of microbial defence systems[J]. Nature Reviews Microbiology, 2022, 20(4): 191-191.
[21] BONDY-DENOMY J, GARCIA B, STRUM S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins[J]. Nature, 2015, 526(7571): 136-139.
[22] WIEGAND T, KARAMBELKAR S, BONDY-DENOMY J, et al. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression[J]. Annu Rev Microbiol, 2020, 74: 21-37.
[23] THAVALINGAM A, CHENG Z, GARCIA B, et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2[J]. Nat Commun, 2019, 10(1): 2806.
[24] HIRSCHI M, LU W T, SANTIAGO-FRANGOS A, et al. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex[J]. Nat Commun, 2020, 11(1): 2730.
[25] LU W T, TROST C N, MULLER-ESPARZA H, et al. Anti-CRISPR AcrIF9 functions by inducing the CRISPR-Cas complex to bind DNA non-specifically[J]. Nucleic Acids Res, 2021, 49(6): 3381-3393.
[26] OSUNA B A, KARAMBELKAR S, MAHENDRA C, et al. Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes[J]. Cell Host Microbe, 2020, 28(1): 31-40 e39.
[27] ATHUKORALAGE J S, MCMAHON S A, ZHANG C, et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity[J]. Nature, 2020, 577(7791): 572-575.
[28] PAWLUK A, STAALS R H, TAYLOR C, et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J]. Nat Microbiol, 2016, 1(8): 16085.
[29] MARINO N D, ZHANG J Y, BORGES A L, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors[J]. Science, 2018, 362(6411): 240-242.
[30] PAWLUK A, AMRANI N, ZHANG Y, et al. Naturally Occurring Off-Switches for CRISPR-Cas9[J]. Cell, 2016, 167(7): 1829-1838 e1829.
[31] YIN Y, YANG B, ENTWISTLE S. Bioinformatics identification of anti-CRISPR loci by using homology, guilt-by-association, and CRISPR self-targeting spacer approaches[J]. Msystems, 2019, 4(5): e00455-00419.
[32] PINILLA-REDONDO R, SHEHREEN S, MARINO N D, et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements[J]. Nat Commun, 2020, 11(1): 5652.
[33] LEON L M, PARK A E, BORGES A L, et al. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa[J]. Nucleic Acids Res, 2021, 49(4): 2114-2125.
[34] BIRKHOLZ N, FAGERLUND R D, SMITH L M, et al. The autoregulator Aca2 mediates anti-CRISPR repression[J]. Nucleic Acids Res, 2019, 47(18): 9658-9665.
[35] STANLEY S Y, BORGES A L, CHEN K H, et al. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription[J]. Cell, 2019, 178(6): 1452-1464 e1413.
[36] OSUNA B A, KARAMBELKAR S, MAHENDRA C, et al. Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor[J]. Cell Host Microbe, 2020, 28(1): 23-30 e25.
[37] WATTERS K E, SHIVRAM H, FELLMANN C, et al. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes[J]. Proc Natl Acad Sci U S A, 2020, 117(12): 6531-6539.
[38] RAUCH B J, SILVIS M R, HULTQUIST J F, et al. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins[J]. Cell, 2017, 168(1-2): 150-158 e110.
[39] HYNES A P, ROUSSEAU G M, AGUDELO D, et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins[J]. Nat Commun, 2018, 9(1): 2919.
[40] KA D, AN S Y, SUH J Y, et al. Crystal structure of an anti-CRISPR protein, AcrIIA1[J]. Nucleic Acids Res, 2018, 46(1): 485-492.
[41] FUCHSBAUER O, SWUEC P, ZIMBERGER C, et al. Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6[J]. Molecular Cell, 2019, 76(6): 922-937.e927.
[42] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. JOURNAL OF BACTERIOLOGY, 1987, 169(12): 5429-5433.
[43] JANSEN R, EMBDEN J D V, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575.
[44] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174-182.
[45] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2): 67-83.
[46] BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(Pt 8): 2551-2561.
[47] POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653-663.
[48] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[49] BROUNS S J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964.
[50] GARNEAU J E, DUPUIS M-È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71.
[51] MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843-1845.
[52] WESTRA E R, VAN ERP P B, KUNNE T, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3[J]. Mol Cell, 2012, 46(5): 595-605.
[53] STERNBERG S H, LAFRANCE B, KAPLAN M, et al. Conformational control of DNA target cleavage by CRISPR–Cas9[J]. Nature, 2015, 527(7576): 110-113.
[54] JIANG W, SAMAI P, MARRAFFINI L A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity[J]. Cell, 2016, 164(4): 710-721.
[55] HALE C R, ZHAO P, OLSON S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell, 2009, 139(5): 945-956.
[56] SASHITAL D G, WIEDENHEFT B, DOUDNA J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Molecular Cell, 2012, 46(5): 606-615.
[57] HORVATH P, BARRANGOU R. CRISPR/Cas, the Immune System of Bacteria and Archaea[J]. Science, 2010, 327(5962): 167-170.
[58] HAFT D H, SELENGUT J, MONGODIN E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes[J]. PLoS Comput Biol, 2005, 1(6): e60.
[59] KUNIN V, SOREK R, HUGENHOLTZ P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biology, 2007, 8(4): 1-7.
[60] MOJICA F J M, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3): 733-740.
[61] JOHN VAN DER OOST M M J, EDZE R. WESTRA, MAGNUS LUNDGREN AND STAN J.J. BROUNS. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends Biochem Sci, 2009, 34(8): 401-407.
[62] JIA N, PATEL D J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins[J]. Nat Rev Mol Cell Biol, 2021, 22(8): 563-579.
[63] FINERAN P C, CHARPENTIER E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information[J]. Virology, 2012, 434(2): 202-209.
[64] LEVY A, GOREN M G, YOSEF I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA[J]. Nature, 2015, 520(7548): 505-510.
[65] DUPUIS M-È, VILLION M, MAGADáN A H, et al. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance[J]. Nature Communications, 2013, 4(1): 1-7.
[66] ARSLAN Z, HERMANNS V, WURM R, et al. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system[J]. Nucleic Acids Res, 2014, 42(12): 7884-7893.
[67] NUNEZ J K, LEE A S, ENGELMAN A, et al. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nature, 2015, 519(7542): 193-198.
[68] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607.
[69] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
[70] WIEDENHEFT B, VAN DUIJN E, BULTEMA J B, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions[J]. Proceedings of the National Academy of Sciences, 2011, 108(25): 10092-10097.
[71] STERNBERG S H, REDDING S, JINEK M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67.
[72] BARRANGOU R, HORVATH P. A decade of discovery: CRISPR functions and applications[J]. Nature microbiology, 2017, 2(7): 1-9.
[73] KOONIN E V, MAKAROVA K S, WOLF Y I. Evolutionary genomics of defense systems in archaea and bacteria[J]. Annual review of microbiology, 2017, 71: 233.
[74] KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37: 67-78.
[75] ADDISON V. WRIGHT J K N E, 1 AND JENNIFER A. DOUDNA1,2,3,4,5,6,*. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering[J]. Cell, 2016, 37: 61-68.
[76] KIRA S. MAKAROVA Y I W, AND EUGENE V. KOONIN*. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?[J]. The CRISPR Journal, 2018, 16(3): 184-192.
[77] MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
[78] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
[79] MAKAROVA K S, KOONIN E V. Annotation and Classification of CRISPR-Cas Systems[J]. Methods Mol Biol, 2015, 1311: 47-75.
[80] CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al. Classification and evolution of type II CRISPR-Cas systems[J]. Nucleic Acids Res, 2014, 42(10): 6091-6105.
[81] XIAO Y, LUO M, DOLAN A E, et al. Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J]. Science, 2018, 361(6397): eaat0839.
[82] SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems[J]. Mol Cell, 2015, 60(3): 385-397.
[83] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[84] JINEK M, JIANG F, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997.
[85] ANDERS C, NIEWOEHNER O, DUERST A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513(7519): 569-573.
[86] NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 162(5): 1113-1126.
[87] HIRANO H, GOOTENBERG J S, HORII T, et al. Structure and Engineering of Francisella novicida Cas9[J]. Cell, 2016, 164(5): 950-961.
[88] SUN W, YANG J, CHENG Z, et al. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States[J]. Mol Cell, 2019, 76(6): 938-952 e935.
[89] HIRANO S, ABUDAYYEH O O, GOOTENBERG J S, et al. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9[J]. Nature Communications, 2019, 10(1): 1-11.
[90] GAO C. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
[91] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[92] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
[93] GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences, 2012, 109(39): E2579-E2586.
[94] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[95] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844.
[96] NAKAMURA M, GAO Y, DOMINGUEZ A A, et al. CRISPR technologies for precise epigenome editing[J]. Nature Cell Biology, 2021, 23(1): 11-22.
[97] COLLIAS D, BEISEL C L. CRISPR technologies and the search for the PAM-free nuclease[J]. Nature Communications, 2021, 12(1): 1-12.
[98] ZETSCHE B, HEIDENREICH M, MOHANRAJU P, et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array[J]. Nature Biotechnology, 2017, 35(1): 31-34.
[99] MING M, REN Q, PAN C, et al. CRISPR–Cas12b enables efficient plant genome engineering[J]. Nature plants, 2020, 6(3): 202-208.
[100] STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1): 1-8.
[101] LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and gene editing technologies[J]. Mol Cell, 2022, 82(2): 333-347.
[102] ÖZCAN A, KRAJESKI R, IOANNIDI E, et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11[J]. Nature, 2021, 597(7878): 720-725.
[103] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
[104] KNOTT G J, DOUDNA J A. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405): 866-869.
[105] DOUDNA J A. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236.
[106] LIANG P, XU Y, ZHANG X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5): 363-372.
[107] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
[108] BARRANGOU R, VAN PIJKEREN J P. Exploiting CRISPR-Cas immune systems for genome editing in bacteria[J]. Curr Opin Biotechnol, 2016, 37: 61-68.
[109] ADLI M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911.
[110] KLOMPE S E, VO P L H, HALPIN-HEALY T S, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219-225.
[111] CSORGO B, LEON L M, CHAU-LY I J, et al. A compact Cascade-Cas3 system for targeted genome engineering[J]. Nat Methods, 2020, 17(12): 1183-1190.
[112] NAMBIAR T S, BAUDRIER L, BILLON P, et al. CRISPR-based genome editing through the lens of DNA repair[J]. Molecular Cell, 2022, 82(2): 348-388.
[113] KIM D Y, LEE J M, MOON S B, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J]. Nature Biotechnology, 2022, 40(1): 94-102.
[114] PETRI K, ZHANG W, MA J, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nature Biotechnology, 2021: 1-5.
[115] KANNAN S, ALTAE-TRAN H, JIN X, et al. Compact RNA editors with small Cas13 proteins[J]. Nature Biotechnology, 2021: 1-4.
[116] CHEN Y-C. CRISPR based genome editing and removal of human viruses [M]. Progress in molecular biology and translational science. Elsevier. 2021: 93-116.
[117] MARINO N D, PINILLA-REDONDO R, CSORGO B, et al. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies[J]. Nat Methods, 2020, 17(5): 471-479.
[118] AN S Y, KA D, KIM I, et al. Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5[J]. Nucleic Acids Res, 2020, 48(13): 7584-7594.
[119] SHIN J, JIANG F, LIU J-J, et al. Disabling Cas9 by an anti-CRISPR DNA mimic[J]. SCIENCE ADVANCES, 2017, 3(7): e1701620.
[120] LIN P, QIN S, PU Q, et al. CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells[J]. Molecular Cell, 2020, 78(5): 850-861. e855.
[121] SMARGON A A, COX D B T, PYZOCHA N K, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4): 618-630 e617.
[122] GREENE A C. CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense[J]. Trends Biotechnol, 2018, 36(2): 127-130.
[123] PURSEY E, SUNDERHAUF D, GAZE W H, et al. CRISPR-Cas antimicrobials: Challenges and future prospects[J]. PLoS Pathog, 2018, 14(6): e1006990.
[124] LI M, GONG L, CHENG F, et al. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems[J]. Science, 2021, 372(6541): eabe5601.
[125] MOHANRAJU P, SAHA C, VAN BAARLEN P, et al. Alternative functions of CRISPR-Cas systems in the evolutionary arms race[J]. Nature Reviews Microbiology, 2022: 1-14.
[126] HE F, BHOOBALAN-CHITTY Y, VAN L B, et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype ID immunity[J]. Nature microbiology, 2018, 3(4): 461-469.
[127] LIU H, ZHU Y, LU Z, et al. Structural basis of Staphylococcus aureus Cas9 inhibition by AcrIIA14[J]. Nucleic Acids Research, 2021, 49(11): 6587-6595.
[128] YANG L, ZHANG L, YIN P, et al. Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24[J]. Nat Commun, 2022, 13(1): 1931.
[129] SMYTH M, MARTIN J. x Ray crystallography[J]. Molecular Pathology, 2000, 53(1): 8.
[130] 马礼敦. X 射线晶体学的百年辉煌[J]. 物理学进展, 2014, 34(2): 47-117.
[131] 苏纪勇. 蛋白质晶体结构解析原理与技术[M]. 北京大学出版社, 2020.
[132] HOLM L, ROSENSTROM P. Dali server: conservation mapping in 3D[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W545-549.
[133] LUBKOWSKI* D M H A J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis[J]. Nucleic Acids Research, 2002, Vol. 30, No. 10 e43.
[134] ADAMS P D, AFONINE P V, BUNKOCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 2): 213-221.
[135] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
[136] SELLARS L E, BRYANT J A, SANCHEZ-ROMERO M A, et al. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12[J]. BMC Microbiol, 2017, 17(1): 170.
[137] SALAMOV V S A, SOLOVYEVAND A. Automatic annotation of microbial genomes and metagenomic sequences[J]. Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies; Li, RW, Ed, 2011: 61-78.
[138] BRáZDA V, KOLOMAZNíK J, LýSEK J, et al. Palindrome analyser–a new web-based server for predicting and evaluating inverted repeats in nucleotide sequences[J]. Biochemical and Biophysical Research Communications, 2016, 478(4): 1739-1745.
[139] CHAYEN N E, SARIDAKIS E. Protein crystallization: from purified protein to diffraction-quality crystal[J]. Nature Methods, 2008, 5(2): 147-153.
[140] AKARSU H, BORDES P, MANSOUR M, et al. TASmania: a bacterial toxin-antitoxin systems database[J]. PLOS Computational Biology, 2019, 15(4): e1006946.
[141] YAMAGUCHI Y, PARK J-H, INOUYE M. Toxin-antitoxin systems in bacteria and archaea[J]. Annual Review of Genetics, 2011, 45(1): 61-79.
[142] LAVERY R, MOAKHER M, MADDOCKS J H, et al. Conformational analysis of nucleic acids revisited: Curves+[J]. Nucleic Acids Res, 2009, 37(17): 5917-5929.
[143] YELLA V R, BHIMSARIA D, GHOSHDASTIDAR D, et al. Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif[J]. Nucleic Acids Res, 2018, 46(22): 11883-11897.
[144] PéREZ-MARTíN J, ROJO F, DE LORENZO V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression[J]. Microbiological reviews, 1994, 58(2): 268-290.

所在学位评定分委会
生物系
国内图书分类号
Q344
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/364866
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
刘艳红. Aca 蛋白介导 Anti-CRISPR 抑制的分子机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849495-刘艳红-生物系.pdf(14269KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘艳红]的文章
百度学术
百度学术中相似的文章
[刘艳红]的文章
必应学术
必应学术中相似的文章
[刘艳红]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。