中文版 | English
题名

FAT: Frequency-Aware Transformation for Bridging Full-Precision and Low-Precision Deep Representations

作者
通讯作者Tao, Chaofan
发表日期
2024-02
DOI
发表期刊
ISSN
2162-237X
EISSN
2162-2388
卷号PP期号:99页码:1-15
摘要

Learning low-bitwidth convolutional neural networks (CNNs) is challenging because performance may drop significantly after quantization. Prior arts often quantize the network weights by carefully tuning hyperparameters such as nonuniform stepsize and layerwise bitwidths, which are complicated since the full-and low-precision representations have large discrepancies. This work presents a novel quantization pipeline, named frequency-aware transformation (FAT), that features important benefits: 1) instead of designing complicated quantizers, FAT learns to transform network weights in the frequency domain to remove redundant information before quantization, making them amenable to training in low bitwidth with simple quantizers; 2) FAT readily embeds CNNs in low bitwidths using standard quantizers without tedious hyperparameter tuning and theoretical analyses show that FAT minimizes the quantization errors in both uniform and nonuniform quantizations; and 3) FAT can be easily plugged into various CNN architectures. Using FAT with a simple uniform/logarithmic quantizer can achieve the state-of-the-art performance in different bitwidths on various model architectures. Consequently, FAT serves to provide a novel frequency-based perspective for model quantization.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
General Research Fund (GRF)[
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000833054400001
出版者
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9837828
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/364975
专题工学院_深港微电子学院
作者单位
1.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
3.Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
4.Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Tao, Chaofan,Lin, Rui,Chen, Quan,et al. FAT: Frequency-Aware Transformation for Bridging Full-Precision and Low-Precision Deep Representations[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,PP(99):1-15.
APA
Tao, Chaofan,Lin, Rui,Chen, Quan,Zhang, Zhaoyang,Luo, Ping,&Wong, Ngai.(2024).FAT: Frequency-Aware Transformation for Bridging Full-Precision and Low-Precision Deep Representations.IEEE Transactions on Neural Networks and Learning Systems,PP(99),1-15.
MLA
Tao, Chaofan,et al."FAT: Frequency-Aware Transformation for Bridging Full-Precision and Low-Precision Deep Representations".IEEE Transactions on Neural Networks and Learning Systems PP.99(2024):1-15.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tao, Chaofan]的文章
[Lin, Rui]的文章
[Chen, Quan]的文章
百度学术
百度学术中相似的文章
[Tao, Chaofan]的文章
[Lin, Rui]的文章
[Chen, Quan]的文章
必应学术
必应学术中相似的文章
[Tao, Chaofan]的文章
[Lin, Rui]的文章
[Chen, Quan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。