中文版 | English
题名

A new PM2.5 concentration forecasting system based on AdaBoost-ensemble system with deep learning approach

作者
通讯作者Sun, Shaolong
发表日期
2022-07-01
DOI
发表期刊
ISSN
0277-6693
EISSN
1099-131X
卷号42期号:1页码:154-175
摘要

A reliable and efficient forecasting system can be used to warn the general public against the increasing PM2.5 concentration. This paper proposes a novel AdaBoost-ensemble technique based on a hybrid data preprocessing-analysis strategy, with the following contributions: (i) a new decomposition strategy is proposed based on the hybrid data preprocessing-analysis strategy, which combines the merits of two popular decomposition algorithms and has been proven to be a promising decomposition strategy; (ii) the long short-term memory (LSTM), as a powerful deep learning forecasting algorithm, is applied to individually forecast the decomposed components, which can effectively capture the long-short patterns of complex time series; and (iii) a novel AdaBoost-LSTM ensemble technique is then developed to integrate the individual forecasting results into the final forecasting results, which provides significant improvement to the forecasting performance. To evaluate the proposed model, a comprehensive and scientific assessment system with several evaluation criteria, comparison models, and experiments is designed. The experimental results indicate that our developed hybrid model considerably surpasses the compared models in terms of forecasting precision and statistical testing and that its excellent forecasting performance can guide in developing effective control measures to decrease environmental contamination and prevent the health issues caused by a high PM2.5 concentration.

关键词
相关链接[来源记录]
收录类别
SSCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[
WOS研究方向
Business & Economics
WOS类目
Economics ; Management
WOS记录号
WOS:000831065900001
出版者
EI入藏号
20223112467467
EI主题词
Adaptive Boosting ; Forecasting ; Learning Systems ; Time Series Analysis
EI分类号
Computer Software, Data HAndling And Applications:723 ; Mathematical Statistics:922.2
ESI学科分类
ECONOMICS BUSINESS
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/364982
专题商学院
作者单位
1.Sun Yat Sen Univ, Sch Business, Guangzhou, Peoples R China
2.Southern Univ Sci & Technol, Sch Business, Shenzhen, Peoples R China
3.Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
5.Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
6.Chinese Acad Sci, Ctr Forecasting Sci, Beijing, Peoples R China
第一作者单位商学院
推荐引用方式
GB/T 7714
Li, Zhongfei,Gan, Kai,Sun, Shaolong,et al. A new PM2.5 concentration forecasting system based on AdaBoost-ensemble system with deep learning approach[J]. JOURNAL OF FORECASTING,2022,42(1):154-175.
APA
Li, Zhongfei,Gan, Kai,Sun, Shaolong,&Wang, Shouyang.(2022).A new PM2.5 concentration forecasting system based on AdaBoost-ensemble system with deep learning approach.JOURNAL OF FORECASTING,42(1),154-175.
MLA
Li, Zhongfei,et al."A new PM2.5 concentration forecasting system based on AdaBoost-ensemble system with deep learning approach".JOURNAL OF FORECASTING 42.1(2022):154-175.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A new PM2 5 concentr(3647KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Zhongfei]的文章
[Gan, Kai]的文章
[Sun, Shaolong]的文章
百度学术
百度学术中相似的文章
[Li, Zhongfei]的文章
[Gan, Kai]的文章
[Sun, Shaolong]的文章
必应学术
必应学术中相似的文章
[Li, Zhongfei]的文章
[Gan, Kai]的文章
[Sun, Shaolong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。