中文版 | English
题名

A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization

作者
通讯作者Xu, Lihong
发表日期
2022-07-01
DOI
发表期刊
ISSN
1567-7818
EISSN
1572-9796
卷号22期号:2页码:287-313
摘要
In the last decade, it is widely known that the Pareto dominance-based evolutionary algorithms (EAs) are unable to deal with many-objective optimization problems (MaOPs) well, as it is hard to maintain a good balance between convergence and diversity. Instead, most researchers in this domain tend to develop EAs that do not rely on Pareto dominance (e.g., decomposition-based and indicator-based techniques) to solve MaOPs. However, it is still hard for these non-Pareto-dominance-based methods to solve MaOPs with unknown irregular PF shapes. In this paper, we develop a general framework for enhancing relaxed Pareto dominance methods to solve MaOPs, which can promote both convergence and diversity. During the environmental selection step, we use M different cases of relaxed Pareto dominance simultaneously, where each expands the dominance area of solutions for M - 1 objectives to improve the selection pressure, while the remaining one objective keeps unchanged. We conduct the experiments on a variety of test problems, the result shows that our proposed framework can obviously improve the performance of relaxed Pareto dominance in solving MaOPs, and is very competitive against or outperform some state-of-the-art many-objective EAs.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of China["61973337","62073155","62002137","62106088"] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:000830956000001
出版者
EI入藏号
20223112521670
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/364989
专题工学院_计算机科学与工程系
作者单位
1.Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
2.Tongji Univ, Dept Elect & Informat Engn, Shanghai 201804, Peoples R China
3.Michigan State Univ, BEACON Ctr, E Lansing, MI 48824 USA
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Shuwei,Xu, Lihong,Goodman, Erik,et al. A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization[J]. Natural Computing,2022,22(2):287-313.
APA
Zhu, Shuwei,Xu, Lihong,Goodman, Erik,Deb, Kalyanmoy,&Lu, Zhichao.(2022).A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization.Natural Computing,22(2),287-313.
MLA
Zhu, Shuwei,et al."A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization".Natural Computing 22.2(2022):287-313.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Shuwei]的文章
[Xu, Lihong]的文章
[Goodman, Erik]的文章
百度学术
百度学术中相似的文章
[Zhu, Shuwei]的文章
[Xu, Lihong]的文章
[Goodman, Erik]的文章
必应学术
必应学术中相似的文章
[Zhu, Shuwei]的文章
[Xu, Lihong]的文章
[Goodman, Erik]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。