题名 | Global solution to the cubic Dirac equation in two space dimensions |
作者 | |
通讯作者 | Li, Kuijie |
发表日期 | 2022-09-15
|
DOI | |
发表期刊 | |
ISSN | 0022-0396
|
EISSN | 1090-2732
|
卷号 | 331 |
摘要 | We are interested in the cubic Dirac equation with mass m is an element of [0, 1] in two space dimensions, which is also known as the Soler model. We conduct a thorough study on this model with initial data sufficiently small in high regularity Sobolev spaces. First, we show the global existence of the cubic Dirac equation, which is uniform-in-mass in the sense that the smallness condition on the initial data is independent of the mass parameter m. In addition, we derive a unified pointwise decay result valid for all m is an element of [0, 1]. Last but not least, we prove solution to the cubic Dirac equation scatters linearly. When the mass m = 0, we can show an improved pointwise decay result. (c) 2022 Elsevier Inc. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | China Postdoctoral Science Foundation[2021M690702]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:000831729200003
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/365004 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Dept Math, Shenzhen 518055, Peoples R China 2.Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China |
第一作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Dong, Shijie,Li, Kuijie. Global solution to the cubic Dirac equation in two space dimensions[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2022,331.
|
APA |
Dong, Shijie,&Li, Kuijie.(2022).Global solution to the cubic Dirac equation in two space dimensions.JOURNAL OF DIFFERENTIAL EQUATIONS,331.
|
MLA |
Dong, Shijie,et al."Global solution to the cubic Dirac equation in two space dimensions".JOURNAL OF DIFFERENTIAL EQUATIONS 331(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
global s.pdf(413KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论