中文版 | English
题名

Developing Tensor-Based Common and Special Feature Analysis for Comprehensive Monitoring of Complex Batch Processes

作者
通讯作者Chen, Junghui
发表日期
2022-07-20
DOI
发表期刊
ISSN
0888-5885
卷号61期号:28页码:10156-10171
摘要
To overcome the limitation of unfolding-based methods and handle the multiple data set and limited data problems in the complex processes, such as multigrade batch processes, a novel tensor-based common and special feature extraction method and a comprehensive monitoring framework are proposed. In the proposed method, the uneven-length three-dimensional data are directly analyzed by the comprehensive tensor-based method without unfolding. To handle the multiple data set modeling problem, the tensor-based common feature extraction methods are first proposed to obtain the common features shared among different grades. The special features are sequentially determined by conducting tensor principal component analysis (PCA) on the residuals of each grade. The data are thus divided into common, special, and residual subspaces. Three monitoring statistics are established respectively in each subspace for online fault detection. The merits and effectiveness of the proposed method are demonstrated by an injection molding process with both even-length and uneven-length data in comparison with traditional methods.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NSF China["62003071","62103287"] ; Fundamental Research Funds for the Central Universities[3132022106] ; Key Laboratory of Intelligent Control Optimization of Industrial Equipment, Ministry of Education Open Fund Projects[LICO2021TB01] ; Ministry of Science and Technology, Taiwan, R.O.C.[MOST 109-2221-E-033-013-MY3]
WOS研究方向
Engineering
WOS类目
Engineering, Chemical
WOS记录号
WOS:000831686200001
出版者
EI入藏号
20223112527649
EI主题词
Batch data processing ; Extraction ; Fault detection ; Feature extraction ; Injection molding ; Principal component analysis
EI分类号
Data Processing and Image Processing:723.2 ; Chemical Operations:802.3 ; Algebra:921.1 ; Mathematical Statistics:922.2
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365008
专题南方科技大学医院
作者单位
1.Dalian Maritime Univ, Sch Marine Elect Engn, Dalian 116026, Peoples R China
2.Southern Univ Sci & Technol Hosp, Intelligent Med Innovat Ctr, Shenzhen 518071, Peoples R China
3.Dalian Neusoft Univ Informat, Sch Gen Educ, Dalian 116023, Peoples R China
4.Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 32023, Taiwan
推荐引用方式
GB/T 7714
Liu, Jingxiang,Sun, Deshun,Xiao, Yeliang,et al. Developing Tensor-Based Common and Special Feature Analysis for Comprehensive Monitoring of Complex Batch Processes[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH,2022,61(28):10156-10171.
APA
Liu, Jingxiang,Sun, Deshun,Xiao, Yeliang,&Chen, Junghui.(2022).Developing Tensor-Based Common and Special Feature Analysis for Comprehensive Monitoring of Complex Batch Processes.INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH,61(28),10156-10171.
MLA
Liu, Jingxiang,et al."Developing Tensor-Based Common and Special Feature Analysis for Comprehensive Monitoring of Complex Batch Processes".INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 61.28(2022):10156-10171.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Jingxiang]的文章
[Sun, Deshun]的文章
[Xiao, Yeliang]的文章
百度学术
百度学术中相似的文章
[Liu, Jingxiang]的文章
[Sun, Deshun]的文章
[Xiao, Yeliang]的文章
必应学术
必应学术中相似的文章
[Liu, Jingxiang]的文章
[Sun, Deshun]的文章
[Xiao, Yeliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。