中文版 | English
题名

A cell phone app for facial acne severity assessment

作者
通讯作者Hou, Muzhou; Zhang, Jianglin
发表日期
2022-07-01
DOI
发表期刊
ISSN
0924-669X
EISSN
1573-7497
卷号53期号:7
摘要
Acne vulgaris, the most common skin disease, can cause substantial economic and psychological impacts to the people it affects, and its accurate grading plays a crucial role in the treatment of patients. In this paper, we firstly proposed an acne grading criterion that considers lesion classifications and a metric for producing accurate severity ratings. Due to similar appearance of acne lesions with comparable severities and difficult-to-count lesions, severity assessment is a challenging task. We cropped facial skin images of several lesion patches and then addressed the acne lesion with a lightweight acne regular network (Acne-RegNet). Acne-RegNet was built by using a median filter and histogram equalization to improve image quality, a channel attention mechanism to boost the representational power of network, a region-based focal loss to handle classification imbalances and a model pruning and feature-based knowledge distillation to reduce model size. After the application of Acne-RegNet, the severity score is calculated, and the acne grading is further optimized by the metadata of the patients. The entire acne assessment procedure was deployed to a mobile device, and a phone app was designed. Compared with state-of-the-art lightweight models, the proposed Acne-RegNet significantly improves the accuracy of lesion classifications. The acne app demonstrated promising results in severity assessments (accuracy: 94.56%) and showed a dermatologist-level diagnosis on the internal clinical dataset.The proposed acne app could be a useful adjunct to assess acne severity in clinical practice and it enables anyone with a smartphone to immediately assess acne, anywhere and anytime.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Natural Science Foundation of Hunan Province,China[2022JJ30673] ; Scientific Research Fund of Hunan Provincial Education Department[20C0402] ; Hunan First Normal University[XYS16N03] ; National Natural Science Foundation of China["82073019","82073018"] ; Shenzhen Science and Technology Innovation Commission, China (Natural Science Foundation of Shenzhen)[JCYJ20210324113001005]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000832835500002
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365009
专题南方科技大学第一附属医院
作者单位
1.Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
2.Cent South Univ, Dept Dermatol, Xiangya Hosp, Changsha 410083, Hunan, Peoples R China
3.Hunan First Normal Univ, Sci & Engn Sch, Changsha 410083, Hunan, Peoples R China
4.Southern Univ Sci & Technol, Dept Dermatol, Affiliated Hosp 1, Shenzhen Peoples Hosp,Clin Med Coll 2,Jinan Unin, Shenzhen 518020, Guangdong, Peoples R China
5.Natl Clin Res Ctr Skin Dis, Candidate Branch, Shenzhen 518020, Guangdong, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Wang, Jiaoju,Luo, Yan,Wang, Zheng,et al. A cell phone app for facial acne severity assessment[J]. APPLIED INTELLIGENCE,2022,53(7).
APA
Wang, Jiaoju.,Luo, Yan.,Wang, Zheng.,Hounye, Alphonse Houssou.,Cao, Cong.,...&Zhang, Jianglin.(2022).A cell phone app for facial acne severity assessment.APPLIED INTELLIGENCE,53(7).
MLA
Wang, Jiaoju,et al."A cell phone app for facial acne severity assessment".APPLIED INTELLIGENCE 53.7(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jiaoju]的文章
[Luo, Yan]的文章
[Wang, Zheng]的文章
百度学术
百度学术中相似的文章
[Wang, Jiaoju]的文章
[Luo, Yan]的文章
[Wang, Zheng]的文章
必应学术
必应学术中相似的文章
[Wang, Jiaoju]的文章
[Luo, Yan]的文章
[Wang, Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。