中文版 | English
题名

Single-shot Embedding Dimension Search in Recommender System

作者
通讯作者Yin,Hongzhi
DOI
发表日期
2022-07-06
会议名称
45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
会议录名称
页码
513-522
会议日期
JUL 11-15, 2022
会议地点
null,Madrid,SPAIN
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
As a crucial component of most modern deep recommender systems, feature embedding maps high-dimensional sparse user/item features into low-dimensional dense embeddings. However, these embeddings are usually assigned a unified dimension, which suffers from the following issues: (1) high memory usage and computation cost. (2) sub-optimal performance due to inferior dimension assignments. In order to alleviate the above issues, some works focus on automated embedding dimension search by formulating it as hyper-parameter optimization or embedding pruning problems. However, they either require well-designed search space for hyperparameters or need time-consuming optimization procedures. In this paper, we propose a Single-Shot Embedding Dimension Search method, called SSEDS, which can efficiently assign dimensions for each feature field via a single-shot embedding pruning operation while maintaining the recommendation accuracy of the model. Specifically, it introduces a criterion for identifying the importance of each embedding dimension for each feature field. As a result, SSEDS could automatically obtain mixed-dimensional embeddings by explicitly reducing redundant embedding dimensions based on the corresponding dimension importance ranking and the predefined parameter budget. Furthermore, the proposed SSEDS is model-agnostic, meaning that it could be integrated into different base recommendation models. The extensive offline experiments are conducted on two widely used public datasets for CTR (Click Through Rate) prediction task, and the results demonstrate that SSEDS can still achieve strong recommendation performance even if it has reduced 90% parameters. Moreover, SSEDS has also been deployed on the WeChat Subscription platform for practical recommendation services. The 7-day online A/B test results show that SSEDS can significantly improve the performance of the online recommendation model while reducing resource consumption.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141235597]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000852715900052
EI入藏号
20223112460868
EI主题词
Budget control ; Embeddings
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85135033923
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365051
专题南方科技大学
作者单位
1.The University of Queensland,Brisbane,Australia
2.WeChat,Tencent,Shenzhen,China
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Qu,Liang,Ye,Yonghong,Tang,Ningzhi,et al. Single-shot Embedding Dimension Search in Recommender System[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2022:513-522.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qu,Liang]的文章
[Ye,Yonghong]的文章
[Tang,Ningzhi]的文章
百度学术
百度学术中相似的文章
[Qu,Liang]的文章
[Ye,Yonghong]的文章
[Tang,Ningzhi]的文章
必应学术
必应学术中相似的文章
[Qu,Liang]的文章
[Ye,Yonghong]的文章
[Tang,Ningzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。