中文版 | English
题名

A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY

作者
发表日期
2022
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号44期号:3页码:A1655-A1680
摘要
We consider the two-dimensional rotating shallow water equations with nonflat bottom topography. We focus on the case of low Froude number, in which the system is stiff and conventional explicit numerical methods are extremely inefficient and often impractical. Our goal is to design a finite volume scheme, which is both asymptotic preserving (uniformly asymptotically consistent and stable for a broad range of low Froude numbers) and well-balanced (capable of exactly preserving geophysically relevant steady-state solutions). The goal is achieved in two steps. We first rewrite the studied equations in terms of perturbations of the steady state and then apply the flux splitting similar to the one used in [Liu, Chertok, and Kurganov J. Comput. Phys., 391 (2019), pp. 259-279]. We split the flux into the stiff and nonstiff parts and then use an implicit-explicit approach: apply an explicit second-order central-upwind scheme to the nonstiff part of the system while treating the stiff part implicitly. As the stiff part of the flux is linear, we reduce the implicit stage of the proposed method to solving a Poisson-type elliptic equation, which is discretized using a standard second-order central difference scheme. We prove the asymptotic preserving property of the developed scheme and conduct a series of numerical experiments, which demonstrate that our scheme outperforms the non-well-balanced asymptotic preserving scheme from [Liu, Chertok, and Kurganov J. Comput. Phys., 391 (2019), pp. 259-279].
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[11771201];National Natural Science Foundation of China[1201101343];National Natural Science Foundation of China[12171226];
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000862824700012
出版者
EI入藏号
20223112531922
EI主题词
Equations of motion ; Numerical methods ; Poisson equation ; Topography
EI分类号
Fluid Flow, General:631.1 ; Calculus:921.2 ; Numerical Methods:921.6 ; Materials Science:951
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85135228014
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365061
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics,SUSTech International Center for Mathematics,Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,Harbin Institute of Technology,Harbin,150001,China
3.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
4.Institute of Mathematics,University of Mainz,Mainz,Germany
第一作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
第一作者的第一单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Kurganov,Alexander,Liu,Yongle,Lukáčová-Medviďová,Mária. A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2022,44(3):A1655-A1680.
APA
Kurganov,Alexander,Liu,Yongle,&Lukáčová-Medviďová,Mária.(2022).A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY.SIAM JOURNAL ON SCIENTIFIC COMPUTING,44(3),A1655-A1680.
MLA
Kurganov,Alexander,et al."A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY".SIAM JOURNAL ON SCIENTIFIC COMPUTING 44.3(2022):A1655-A1680.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kurganov,Alexander]的文章
[Liu,Yongle]的文章
[Lukáčová-Medviďová,Mária]的文章
百度学术
百度学术中相似的文章
[Kurganov,Alexander]的文章
[Liu,Yongle]的文章
[Lukáčová-Medviďová,Mária]的文章
必应学术
必应学术中相似的文章
[Kurganov,Alexander]的文章
[Liu,Yongle]的文章
[Lukáčová-Medviďová,Mária]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。