题名 | A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1064-8275
|
EISSN | 1095-7197
|
卷号 | 44期号:3页码:A1655-A1680 |
摘要 | We consider the two-dimensional rotating shallow water equations with nonflat bottom topography. We focus on the case of low Froude number, in which the system is stiff and conventional explicit numerical methods are extremely inefficient and often impractical. Our goal is to design a finite volume scheme, which is both asymptotic preserving (uniformly asymptotically consistent and stable for a broad range of low Froude numbers) and well-balanced (capable of exactly preserving geophysically relevant steady-state solutions). The goal is achieved in two steps. We first rewrite the studied equations in terms of perturbations of the steady state and then apply the flux splitting similar to the one used in [Liu, Chertok, and Kurganov J. Comput. Phys., 391 (2019), pp. 259-279]. We split the flux into the stiff and nonstiff parts and then use an implicit-explicit approach: apply an explicit second-order central-upwind scheme to the nonstiff part of the system while treating the stiff part implicitly. As the stiff part of the flux is linear, we reduce the implicit stage of the proposed method to solving a Poisson-type elliptic equation, which is discretized using a standard second-order central difference scheme. We prove the asymptotic preserving property of the developed scheme and conduct a series of numerical experiments, which demonstrate that our scheme outperforms the non-well-balanced asymptotic preserving scheme from [Liu, Chertok, and Kurganov J. Comput. Phys., 391 (2019), pp. 259-279]. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Natural Science Foundation of China[11771201];National Natural Science Foundation of China[1201101343];National Natural Science Foundation of China[12171226];
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000862824700012
|
出版者 | |
EI入藏号 | 20223112531922
|
EI主题词 | Equations of motion
; Numerical methods
; Poisson equation
; Topography
|
EI分类号 | Fluid Flow, General:631.1
; Calculus:921.2
; Numerical Methods:921.6
; Materials Science:951
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85135228014
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/365061 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Department of Mathematics,SUSTech International Center for Mathematics,Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mathematics,Harbin Institute of Technology,Harbin,150001,China 3.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 4.Institute of Mathematics,University of Mainz,Mainz,Germany |
第一作者单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
第一作者的第一单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
推荐引用方式 GB/T 7714 |
Kurganov,Alexander,Liu,Yongle,Lukáčová-Medviďová,Mária. A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2022,44(3):A1655-A1680.
|
APA |
Kurganov,Alexander,Liu,Yongle,&Lukáčová-Medviďová,Mária.(2022).A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY.SIAM JOURNAL ON SCIENTIFIC COMPUTING,44(3),A1655-A1680.
|
MLA |
Kurganov,Alexander,et al."A WELL-BALANCED ASYMPTOTIC PRESERVING SCHEME FOR THE TWO-DIMENSIONAL ROTATING SHALLOW WATER EQUATIONS WITH NONFLAT BOTTOM TOPOGRAPHY".SIAM JOURNAL ON SCIENTIFIC COMPUTING 44.3(2022):A1655-A1680.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论