中文版 | English
题名

Experimental validation and performance analysis of deep learning acoustic source imaging methods

作者
通讯作者Liu, Yu
DOI
发表日期
2022-06-14
会议名称
28th AIAA/CEAS Aeroacoustics Conference
会议录名称
卷号
AIAA Paper 2022-2852
会议日期
14-17 June, 2022
会议地点
Southampton, UK
摘要

Deep Neural Network (DNN) models offer a very attractive alternative to existing acoustic source imaging techniques, such as acoustic beamforming, due to their ever-growing potential with increasing computational power. Source resolution of acoustic beamforming methods can be limited at relatively low frequencies and despite the use of deconvolution methods, the source maps may also possess sidelobes, particularly at high frequencies, and main lobe smearing. Since the application of DNN models to acoustic source imaging problems is a very recent concept, there are little data available regarding the robustness and performance analysis of DNN models. In this paper, a numerical DNN model for acoustic source imaging is presented, that is trained using random phase pressure data generated from six sources over a series of design frequencies, ranging from 1000 Hz to 20,000 Hz. The DNN model robustness is tested, by including extraneous Gaussian white noise and tonal noise inputs near the design frequency. The DNN models are also tested at frequencies that slightly differ from the design frequencies, thus calculating a frequency range over which the DNN model can generate adequate acoustic source estimation. The DNN models are also tested using different number of sources that what they are trained for, to further test robustness. An experimental validation is conducted using a single speaker that is systematically placed over a speaker grid to generate training data via acoustic superposition. The performance of the experimentally trained DNN model, albeit in its infancy, shows exceptional noise source localization capability and a very promising start for a more sophisticated experimentally trained DNN model suitable for aeroacoustic testing in a wind tunnel facility.

学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[92052105]
EI入藏号
20223112461842
EI主题词
Acoustic noise ; Acoustic noise measurement ; Aeroacoustics ; Beamforming ; Deep neural networks ; Frequency estimation ; White noise ; Wind tunnels
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Wind Tunnels:651.2 ; Electromagnetic Waves in Relation to Various Structures:711.2 ; Artificial Intelligence:723.4 ; Acoustics, Noise. Sound:751 ; Acoustic Noise:751.4 ; Acoustic Variables Measurements:941.2
Scopus记录号
2-s2.0-85135074935
来源库
Scopus
出版状态
正式出版
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365071
专题工学院_力学与航空航天工程系
作者单位
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Arcondoulis,Elias J.G.,Li, Qing,Wei, Sheng,et al. Experimental validation and performance analysis of deep learning acoustic source imaging methods[C],2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Arcondoulis,Elias J.G.]的文章
[Li, Qing]的文章
[Wei, Sheng]的文章
百度学术
百度学术中相似的文章
[Arcondoulis,Elias J.G.]的文章
[Li, Qing]的文章
[Wei, Sheng]的文章
必应学术
必应学术中相似的文章
[Arcondoulis,Elias J.G.]的文章
[Li, Qing]的文章
[Wei, Sheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。