中文版 | English
题名

Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data

作者
通讯作者Chang,Haibin; Zhang,Dongxiao
发表日期
2021-03-01
DOI
发表期刊
ISSN
1815-2406
EISSN
1991-7120
卷号29期号:3页码:698-728
摘要
In recent years, data-driven methods have been developed to learn dynamical systems and partial differential equations (PDE). The goal of such work is to discover unknown physics and corresponding equations. However, prior to achieving this goal, major challenges remain to be resolved, including learning PDE under noisy data and limited discrete data. To overcome these challenges, in this work, a deeplearning based data-driven method, called DL-PDE, is developed to discover the governing PDEs of underlying physical processes. The DL-PDE method combines deep learning via neural networks and data-driven discovery of PDE via sparse regressions. In the DL-PDE, a neural network is first trained, then a large amount of meta-data is generated, and the required derivatives are calculated by automatic differentiation. Finally, the form of PDE is discovered by sparse regression. The proposed method is tested with physical processes, governed by the diffusion equation, the convectiondiffusion equation, the Burgers equation, and the Korteweg-de Vries (KdV) equation, for proof-of-concept and applications in real-world engineering settings. The proposed method achieves satisfactory results when data are noisy and limited.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
WOS记录号
WOS:000614555300002
Scopus记录号
2-s2.0-85100289162
来源库
Scopus
引用统计
被引频次[WOS]:21
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/365081
专题工学院_环境科学与工程学院
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.State Environmental Protection Key Laboratory of Integrated SurfaceWater-Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Xu,Hao,Chang,Haibin,Zhang,Dongxiao. Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data[J]. Communications in Computational Physics,2021,29(3):698-728.
APA
Xu,Hao,Chang,Haibin,&Zhang,Dongxiao.(2021).Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data.Communications in Computational Physics,29(3),698-728.
MLA
Xu,Hao,et al."Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data".Communications in Computational Physics 29.3(2021):698-728.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Xu,Hao]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。