中文版 | English
题名

Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation

作者
通讯作者Yang, Jiang
发表日期
2022-09-01
DOI
发表期刊
ISSN
0885-7474
EISSN
1573-7691
卷号92期号:3
摘要
It is difficult to design high order numerical schemes which could preserve both the maximum bound property (MBP) and energy dissipation law for certain phase field equations. Strong stability preserving (SSP) Runge-Kutta methods have been developed for numerical solution of hyperbolic partial differential equations in the past few decades, where strong stability means the non-increasing of the maximum bound of the underlying solutions. However, existing framework of SSP RK methods can not handle nonlinear stabilities like energy dissipation law. The aim of this work is to extend this SSP theory to deal with the nonlinear phase field equation of the Allen-Cahn type which typically satisfies both maximum bound preserving (MBP) and energy dissipation law. More precisely, for Runge-Kutta time discretizations, we first derive a general necessary and sufficient condition under which MBP is satisfied; and we further provide a necessary condition under which the MBP scheme satisfies energy dissipation.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[11871264] ; Natural Science Foundation of Guangdong Province[2018A0303130123] ; Shenzhen Natural Science Fund[RCJC20210609103819018] ; NSFC/Hong Kong RRC Joint Research Scheme[NFSC/RGC 11961160718]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000834864600008
出版者
EI入藏号
20223112525883
EI主题词
Maximum principle ; Nonlinear equations ; Numerical methods ; Runge Kutta methods
EI分类号
Energy Losses (industrial and residential):525.4 ; Numerical Methods:921.6
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/375564
专题理学院_数学系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
2.Univ British Columbia, Dept Math, Vancouver, BC, Canada
3.BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai 519000, Peoples R China
4.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
5.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen, Peoples R China
第一作者单位数学系
通讯作者单位数学系;  南方科技大学
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Fu, Zhaohui,Tang, Tao,Yang, Jiang. Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING,2022,92(3).
APA
Fu, Zhaohui,Tang, Tao,&Yang, Jiang.(2022).Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation.JOURNAL OF SCIENTIFIC COMPUTING,92(3).
MLA
Fu, Zhaohui,et al."Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation".JOURNAL OF SCIENTIFIC COMPUTING 92.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
百度学术
百度学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
必应学术
必应学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。