题名 | Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation |
作者 | |
通讯作者 | Yang, Jiang |
发表日期 | 2022-09-01
|
DOI | |
发表期刊 | |
ISSN | 0885-7474
|
EISSN | 1573-7691
|
卷号 | 92期号:3 |
摘要 | It is difficult to design high order numerical schemes which could preserve both the maximum bound property (MBP) and energy dissipation law for certain phase field equations. Strong stability preserving (SSP) Runge-Kutta methods have been developed for numerical solution of hyperbolic partial differential equations in the past few decades, where strong stability means the non-increasing of the maximum bound of the underlying solutions. However, existing framework of SSP RK methods can not handle nonlinear stabilities like energy dissipation law. The aim of this work is to extend this SSP theory to deal with the nonlinear phase field equation of the Allen-Cahn type which typically satisfies both maximum bound preserving (MBP) and energy dissipation law. More precisely, for Runge-Kutta time discretizations, we first derive a general necessary and sufficient condition under which MBP is satisfied; and we further provide a necessary condition under which the MBP scheme satisfies energy dissipation. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China (NSFC)[11871264]
; Natural Science Foundation of Guangdong Province[2018A0303130123]
; Shenzhen Natural Science Fund[RCJC20210609103819018]
; NSFC/Hong Kong RRC Joint Research Scheme[NFSC/RGC 11961160718]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000834864600008
|
出版者 | |
EI入藏号 | 20223112525883
|
EI主题词 | Maximum principle
; Nonlinear equations
; Numerical methods
; Runge Kutta methods
|
EI分类号 | Energy Losses (industrial and residential):525.4
; Numerical Methods:921.6
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/375564 |
专题 | 理学院_数学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 2.Univ British Columbia, Dept Math, Vancouver, BC, Canada 3.BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai 519000, Peoples R China 4.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China 5.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系; 南方科技大学 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Fu, Zhaohui,Tang, Tao,Yang, Jiang. Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING,2022,92(3).
|
APA |
Fu, Zhaohui,Tang, Tao,&Yang, Jiang.(2022).Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation.JOURNAL OF SCIENTIFIC COMPUTING,92(3).
|
MLA |
Fu, Zhaohui,et al."Energy Plus Maximum Bound Preserving Runge-Kutta Methods for the Allen-Cahn Equation".JOURNAL OF SCIENTIFIC COMPUTING 92.3(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论