中文版 | English
题名

ST-ExpertNet: A Deep Expert Framework for Traffic Prediction

作者
发表日期
2022
DOI
发表期刊
ISSN
2326-3865
EISSN
1558-2191
卷号PP期号:99页码:1-14
摘要
Recently, forecasting the crowd flows has become an important research topic, and plentiful technologies have achieved good performances. As we all know, the flow at a citywide level is in a mixed state with several basic patterns (e.g., commuting, working, and commercial) caused by the city area functional distributions (e.g., developed commercial areas, educational areas and parks). However, existing technologies have been criticized for their lack of considering the differences in the flow patterns among regions since they want to build only one comprehensive model to learn the mixed flow tensors. Recognizing this limitation, we present a new perspective on flow prediction and propose an explainable framework named ST-ExpertNet, which can adopt every spatial-temporal model and train a set of functional experts devoted to specific flow patterns. Technically, we train a bunch of experts based on the Mixture of Experts (MoE), which guides each expert to specialize in different kinds of flow patterns in sample spaces by using the gating network. We define several criteria, including comprehensiveness, sparsity, and preciseness, to construct the experts for better interpretability and performances. We conduct experiments on a wide range of real-world taxi and bike datasets in Beijing and NYC. The visualizations of the expert's intermediate results demonstrate that our ST-ExpertNet successfully disentangles the city's mixed flow tensors along with the city layout, e.g., the urban ring road structure. Different network architectures, such as ST-ResNet, ConvLSTM, and CNN, have been adopted into our ST-ExpertNet framework for experiments and the results demonstrates the superiority of our framework in both interpretability and performances.
关键词
相关链接[IEEE记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
资助项目
Guangdong Provinial Key Laboratory[20K19782] ; Japan Society for the Promotion of Science, Japan's Ministry of Education, Culture, Sports, Science, and Technology (MEXT)[2020B121201001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号
WOS:001004293600071
出版者
EI入藏号
20223412602136
EI主题词
Forecasting ; Job analysis ; Mixtures ; Network architecture ; Neural networks ; Parks ; Taxicabs ; Tensors
EI分类号
Fluid Flow, General:631.1 ; Automobiles:662.1 ; Algebra:921.1
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9851916
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/375578
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.The University of Tokyo, Kashiwa-shi, Chiba, Japan
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hongjun Wang,Jiyuan Chen,Zipei Fan,et al. ST-ExpertNet: A Deep Expert Framework for Traffic Prediction[J]. IEEE Transactions on Knowledge and Data Engineering,2022,PP(99):1-14.
APA
Hongjun Wang,Jiyuan Chen,Zipei Fan,Zhiwen Zhang,Zekun Cai,&Xuan Song.(2022).ST-ExpertNet: A Deep Expert Framework for Traffic Prediction.IEEE Transactions on Knowledge and Data Engineering,PP(99),1-14.
MLA
Hongjun Wang,et al."ST-ExpertNet: A Deep Expert Framework for Traffic Prediction".IEEE Transactions on Knowledge and Data Engineering PP.99(2022):1-14.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hongjun Wang]的文章
[Jiyuan Chen]的文章
[Zipei Fan]的文章
百度学术
百度学术中相似的文章
[Hongjun Wang]的文章
[Jiyuan Chen]的文章
[Zipei Fan]的文章
必应学术
必应学术中相似的文章
[Hongjun Wang]的文章
[Jiyuan Chen]的文章
[Zipei Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。