中文版 | English
题名

Maneuvering Angle Rigid Formations With Global Convergence Guarantees

作者
通讯作者Zhiyun Lin; Mir Feroskhan
发表日期
2022-08
DOI
发表期刊
ISSN
2329-9274
EISSN
2329-9274
卷号9期号:8页码:1464-1475
摘要

Angle rigid multi-agent formations can simultaneously undergo translational, rotational, and scaling maneuvering, therefore combining the maneuvering capabilities of both distance and bearing rigid formations. However, maneuvering angle rigid formations in 2D or 3D with global convergence guarantees is shown to be a challenging problem in the existing literature even when relative position measurements are available. Motivated by angle-induced linear equations in 2D triangles and 3D tetrahedra, this paper aims to solve this challenging problem in both 2D and 3D under a leader-follower framework For the 2D case where the leaders have constant velocities, by using local relative position and velocity measurements, a formation maneuvering law is designed for the followers governed by double-integrator dynamics. When the leaders have time-varying velocities, a sliding mode formation maneuvering law is proposed by using the same measurements. For the 3D case, to establish an angle-induced linear equation for each tetrahedron, we assume that all the followers' coordinate frames share a common Z direction. Then, a formation maneuvering law is proposed for the followers to globally maneuver Z weakly angle rigid formations in 3D. The extension to Lagrangian agent dynamics and the construction of the desired rigid formations by using the minimum number of angle constraints are also discussed. Simulation examples are provided to validate the effectiveness of the proposed algorithms.

关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[62173118] ; Spanish Ministry of Science[RYC2020-030090-I]
WOS研究方向
Automation & Control Systems
WOS类目
Automation & Control Systems
WOS记录号
WOS:000838825000012
出版者
EI入藏号
20223312568986
EI主题词
Geometry ; Linear Equations
EI分类号
Mathematics:921
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9849144
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/375595
专题工学院_电子与电气工程系
作者单位
1.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
3.Department of Computer Architecture and Technology, CITIC, University of Granada, Granada, Spain
4.Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Liangming Chen,Zhiyun Lin,Hector Garcia de Marina,et al. Maneuvering Angle Rigid Formations With Global Convergence Guarantees[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(8):1464-1475.
APA
Liangming Chen,Zhiyun Lin,Hector Garcia de Marina,Zhiyong Sun,&Mir Feroskhan.(2022).Maneuvering Angle Rigid Formations With Global Convergence Guarantees.IEEE/CAA Journal of Automatica Sinica,9(8),1464-1475.
MLA
Liangming Chen,et al."Maneuvering Angle Rigid Formations With Global Convergence Guarantees".IEEE/CAA Journal of Automatica Sinica 9.8(2022):1464-1475.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liangming Chen]的文章
[Zhiyun Lin]的文章
[Hector Garcia de Marina]的文章
百度学术
百度学术中相似的文章
[Liangming Chen]的文章
[Zhiyun Lin]的文章
[Hector Garcia de Marina]的文章
必应学术
必应学术中相似的文章
[Liangming Chen]的文章
[Zhiyun Lin]的文章
[Hector Garcia de Marina]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。