中文版 | English
题名

Machine Learning Experimental Multipartite Entanglement Structure

作者
通讯作者Ren,Changliang; Lu,Dawei
发表日期
2022
DOI
发表期刊
EISSN
2511-9044
摘要
With the rapid growth of controllable qubits in recent years, experimental multipartite entangled states can be created with high fidelity in various moderate- and large-scale physical systems. However, the characterization of multipartite entanglement structure remains a formidable challenge, as traditionally it requires exponential number of local measurements to realize the identification. Machine learning is demonstrated to be an efficient tool to detect the underlying entanglement structure for ideal states, but it has non-negligible underperformance when tackling imperfect experimental data in reality. Here, a modified classifier based on feed-forward neural network to predict experimental entanglement structure in terms of entanglement intactness and depth is proposed. By preprocessing the input data, the classifier maintains efficiency and reliability against experimental noises, with the accuracy being enhanced from 69.7% to 91.2% for 6-qubit entangled states in spin systems. This method is anticipated to shed light on future studies of entanglement structure, in particular when the number of controlled qubits reaches explosive growth in practice.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China["2019YFA0308100","2017YFA0305000"] ; National Natural Science Foundation of China["12075110","12075245","11975117","11905099","11875159","11905111","U1801661"] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515011383] ; Guangdong International Collaboration Program[2020A0505100001] ; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20190902092905285","KQTD20190929173815000","JCYJ20200109140803865","JCYJ20180302174036418"] ; Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program[2019ZT08C044] ; Guangdong Provincial Key Laboratory[2019B121203002] ; Natural Science Foundation of Hunan Province[2021JJ10033]
WOS研究方向
Physics ; Optics
WOS类目
Quantum Science & Technology ; Optics
WOS记录号
WOS:000837148300001
出版者
EI入藏号
20223212551269
EI主题词
Feedforward neural networks ; Quantum entanglement ; Qubits
EI分类号
Artificial Intelligence:723.4 ; Light, Optics and Optical Devices:741 ; Nanotechnology:761 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85135527817
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/375649
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Department of Physics and Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China
3.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications,Hunan Normal University,Changsha,410081,China
第一作者单位物理系;  量子科学与工程研究院;  南方科技大学
通讯作者单位物理系;  量子科学与工程研究院;  南方科技大学
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Tian,Yu,Che,Liangyu,Long,Xinyue,et al. Machine Learning Experimental Multipartite Entanglement Structure[J]. Advanced Quantum Technologies,2022.
APA
Tian,Yu,Che,Liangyu,Long,Xinyue,Ren,Changliang,&Lu,Dawei.(2022).Machine Learning Experimental Multipartite Entanglement Structure.Advanced Quantum Technologies.
MLA
Tian,Yu,et al."Machine Learning Experimental Multipartite Entanglement Structure".Advanced Quantum Technologies (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tian,Yu]的文章
[Che,Liangyu]的文章
[Long,Xinyue]的文章
百度学术
百度学术中相似的文章
[Tian,Yu]的文章
[Che,Liangyu]的文章
[Long,Xinyue]的文章
必应学术
必应学术中相似的文章
[Tian,Yu]的文章
[Che,Liangyu]的文章
[Long,Xinyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。