题名 | Machine Learning Experimental Multipartite Entanglement Structure |
作者 | |
通讯作者 | Ren,Changliang; Lu,Dawei |
发表日期 | 2022
|
DOI | |
发表期刊 | |
EISSN | 2511-9044
|
摘要 | With the rapid growth of controllable qubits in recent years, experimental multipartite entangled states can be created with high fidelity in various moderate- and large-scale physical systems. However, the characterization of multipartite entanglement structure remains a formidable challenge, as traditionally it requires exponential number of local measurements to realize the identification. Machine learning is demonstrated to be an efficient tool to detect the underlying entanglement structure for ideal states, but it has non-negligible underperformance when tackling imperfect experimental data in reality. Here, a modified classifier based on feed-forward neural network to predict experimental entanglement structure in terms of entanglement intactness and depth is proposed. By preprocessing the input data, the classifier maintains efficiency and reliability against experimental noises, with the accuracy being enhanced from 69.7% to 91.2% for 6-qubit entangled states in spin systems. This method is anticipated to shed light on future studies of entanglement structure, in particular when the number of controlled qubits reaches explosive growth in practice. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key Research and Development Program of China["2019YFA0308100","2017YFA0305000"]
; National Natural Science Foundation of China["12075110","12075245","11975117","11905099","11875159","11905111","U1801661"]
; Guangdong Basic and Applied Basic Research Foundation[2019A1515011383]
; Guangdong International Collaboration Program[2020A0505100001]
; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20190902092905285","KQTD20190929173815000","JCYJ20200109140803865","JCYJ20180302174036418"]
; Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program[2019ZT08C044]
; Guangdong Provincial Key Laboratory[2019B121203002]
; Natural Science Foundation of Hunan Province[2021JJ10033]
|
WOS研究方向 | Physics
; Optics
|
WOS类目 | Quantum Science & Technology
; Optics
|
WOS记录号 | WOS:000837148300001
|
出版者 | |
EI入藏号 | 20223212551269
|
EI主题词 | Feedforward neural networks
; Quantum entanglement
; Qubits
|
EI分类号 | Artificial Intelligence:723.4
; Light, Optics and Optical Devices:741
; Nanotechnology:761
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85135527817
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/375649 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Department of Physics and Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China 3.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 4.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications,Hunan Normal University,Changsha,410081,China |
第一作者单位 | 物理系; 量子科学与工程研究院; 南方科技大学 |
通讯作者单位 | 物理系; 量子科学与工程研究院; 南方科技大学 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Tian,Yu,Che,Liangyu,Long,Xinyue,et al. Machine Learning Experimental Multipartite Entanglement Structure[J]. Advanced Quantum Technologies,2022.
|
APA |
Tian,Yu,Che,Liangyu,Long,Xinyue,Ren,Changliang,&Lu,Dawei.(2022).Machine Learning Experimental Multipartite Entanglement Structure.Advanced Quantum Technologies.
|
MLA |
Tian,Yu,et al."Machine Learning Experimental Multipartite Entanglement Structure".Advanced Quantum Technologies (2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论