中文版 | English
题名

The Dynamic Epigenetic Study of Prostate Cancer

姓名
姓名拼音
FANG Chao
学号
11653013
学位类型
博士
学位专业
生物医药
导师
侯春晖
导师单位
生物系
外机构导师
Edwin Chong Wing CHEUNG
外机构导师单位
澳门大学
论文答辩日期
2022-07-31
论文提交日期
2022-08-17
学位授予单位
澳门大学
学位授予地点
澳门
摘要

Prostate cancer (PCa) is the leading cancer diagnosed among men. The androgen receptor (AR) regulates downstream gene transcription after binding with its ligand in both normal and cancerous prostate cells. Here, we captured the genome conformation of both AR-inactivated and AR-activated VCaP cells using Hi-C technology to reveal the gene regulation induced by AR activation with respect to the change in 3D organization of the genome. The global conformation of the genome showed no obvious change at the compartment and Topological associating domain (TAD) levels. In contrast, the transcriptome of AR-activated VCaP cells was significantly regulated, and AR binding was greatly increased. Changes in long-range interactions were related to significantly regulated genes, and the remote regions were highly enriched with AR and other factor binding signals.

关键词
语种
英语
培养类别
联合培养
入学年份
2016
学位授予年份
2022-08
参考文献列表

Akram, M. (2014). Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochem. Biophys. 68, 475–478. https://doi.org/10.1007/s12013-013-9750-1.Alipour, E., and Marko, J.F. (2012). Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212. https://doi.org/10.1093/nar/gks925.Amin Al Olama, A., Dadaev, T., Hazelett, D.J., Li, Q., Leongamornlert, D., Saunders, E.J., Stephens, S., Cieza-Borrella, C., Whitmore, I., Benlloch Garcia, S., et al. (2015). Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum. Mol. Genet. 24, 5589–5602. https://doi.org/10.1093/hmg/ddv203.Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461. https://doi.org/10.1038/nature12787.Attard, G., Parker, C., Eeles, R.A., Schröder, F., Tomlins, S.A., Tannock, I., Drake, C.G., and de Bono, J.S. (2016). Prostate cancer. The Lancet 387, 70–82. https://doi.org/10.1016/S0140-6736(14)61947-4.Bain, D.L., Heneghan, A.F., Connaghan-Jones, K.D., and Miura, M.T. (2007). Nuclear Receptor Structure: Implications for Function. Annu. Rev. Physiol. 69, 201–220. https://doi.org/10.1146/annurev.physiol.69.031905.160308.Ballaré, C., Castellano, G., Gaveglia, L., Althammer, S., González-Vallinas, J., Eyras, E., Le Dily, F., Zaurin, R., Soronellas, D., Vicent, G.P., et al. (2013). Nucleosome-Driven Transcription Factor Binding and Gene Regulation. Mol. Cell 49, 67–79. https://doi.org/10.1016/j.molcel.2012.10.019.Belaghzal, H., Dekker, J., and Gibcus, J.H. (2017). Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods San Diego Calif 123, 56–65. https://doi.org/10.1016/J.YMETH.2017.04.004.Biddie, S., John, S., Sabo, P., Thurman, R., Johnson, T., Schiltz, R.L., Miranda, T., Sung, M.-H., Trump, S., Lightman, S., et al. (2011). Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding. Mol. Cell 43, 145–155. https://doi.org/10.1016/j.molcel.2011.06.016.Body, J.-J., Casimiro, S., and Costa, L. (2015). Targeting bone metastases in prostate cancer: improving clinical outcome. Nat. Rev. Urol. 12, 340–356. https://doi.org/10.1038/nrurol.2015.90.Brackley, C.A., Johnson, J., Michieletto, D., Morozov, A.N., Nicodemi, M., Cook, P.R., and Marenduzzo, D. (2017). Nonequilibrium Chromosome Looping via Molecular Slip Links. Phys. Rev. Lett. 119, 138101. https://doi.org/10.1103/PhysRevLett.119.138101.Busslinger, G.A., Stocsits, R.R., van der Lelij, P., Axelsson, E., Tedeschi, A., Galjart, N., and Peters, J.-M. (2017). Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507. https://doi.org/10.1038/nature22063.Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., et al. (2006). Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38, 1289–1297. https://doi.org/10.1038/ng1901.Chng, K.R., Chang, C.W., Tan, S.K., Yang, C., Hong, S.Z., Sng, N.Y.W., and Cheung, E. (2012). A transcriptional repressor co-regulatory network governing androgen response in prostate cancers: Corepressor regulation of AR signalling. EMBO J. 31, 2810–2823. https://doi.org/10.1038/emboj.2012.112.Chu, T., Wang, Z., Chou, S.-P., and Danko, C.G. (2019). Discovering Transcriptional Regulatory Elements From Run-On and Sequencing Data Using the Web-Based dREG Gateway. Curr. Protoc. Bioinforma. 66, e70. https://doi.org/10.1002/cpbi.70.Conteduca, V., Oromendia, C., Eng, K.W., Bareja, R., Sigouros, M., Molina, A., Faltas, B.M., Sboner, A., Mosquera, J.M., Elemento, O., et al. (2019). Clinical features of neuroendocrine prostate cancer. Eur. J. Cancer 121, 7–18. https://doi.org/10.1016/j.ejca.2019.08.011.Core, L.J., Martins, A.L., Danko, C.G., Waters, C.T., Siepel, A., and Lis, J.T. (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 46, 1311–1320. https://doi.org/10.1038/ng.3142.Crane, E., Bian, Q., McCord, R.P., Lajoie, B.R., Wheeler, B.S., Ralston, E.J., Uzawa, S., Dekker, J., and Meyer, B.J. (2015). Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244. https://doi.org/10.1038/nature14450.Dai, C., Heemers, H., and Sharifi, N. (2017). Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 7, a030452. https://doi.org/10.1101/cshperspect.a030452.Danko, C.G., Hyland, S.L., Core, L.J., Martins, A.L., Waters, C.T., Lee, H.W., Cheung, V.G., Kraus, W.L., Lis, J.T., and Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nat. Methods 12, 433–438. https://doi.org/10.1038/nmeth.3329.Davidson, I.F., Goetz, D., Zaczek, M.P., Molodtsov, M.I., Huis In ’t Veld, P.J., Weissmann, F., Litos, G., Cisneros, D.A., Ocampo-Hafalla, M., Ladurner, R., et al. (2016). Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685. https://doi.org/10.15252/embj.201695402.Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P.D., Dean, A., and Blobel, G.A. (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244. https://doi.org/10.1016/j.cell.2012.03.051.Díaz, N., Kruse, K., Erdmann, T., Staiger, A.M., Ott, G., Lenz, G., and Vaquerizas, J.M. (2018). Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. Nat. Commun. 9, 4938. https://doi.org/10.1038/s41467-018-06961-0.Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380. https://doi.org/10.1038/nature11082.Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al. (2015). Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336. https://doi.org/10.1038/nature14222.Droog, M., Mensink, M., and Zwart, W. (2016). The estrogen receptor α-cistrome beyond breast cancer. Mol. Endocrinol. 30, 1046–1058. https://doi.org/2019041122343623200.Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 3, 95–98. https://doi.org/10.1016/j.cels.2016.07.002.Eagen, K.P. (2018). Principles of Chromosome Architecture Revealed by Hi-C. Trends Biochem. Sci. 43, 469–478. https://doi.org/10.1016/j.tibs.2018.03.006.Eeles, R., Goh, C., Castro, E., Bancroft, E., Guy, M., Olama, A.A.A., Easton, D., and Kote-Jarai, Z. (2014). The genetic epidemiology of prostate cancer and its clinical implications. Nat. Rev. Urol. 11, 18–31. https://doi.org/10.1038/nrurol.2013.266.Epstein, J.I., Zelefsky, M.J., Sjoberg, D.D., Nelson, J.B., Egevad, L., Magi-Galluzzi, C., Vickers, A.J., Parwani, A.V., Reuter, V.E., Fine, S.W., et al. (2016). A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 69, 428–435. https://doi.org/10.1016/j.eururo.2015.06.046.Franklin, R., B. (2005). Zinc and zinc transporters in normal prostate function and the pathogenesis of prostate cancer. Front. Biosci. 10, 2230. https://doi.org/10.2741/1692.Franz, M.-C., Anderle, P., Bürzle, M., Suzuki, Y., Freeman, M.R., Hediger, M.A., and Kovacs, G. (2013). Zinc transporters in prostate cancer. Mol. Aspects Med. 34, 735–741. https://doi.org/10.1016/j.mam.2012.11.007.Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L.A. (2016). Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 15, 2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085.Fuentes, N., and Silveyra, P. (2019). Estrogen receptor signaling mechanisms. In Advances in Protein Chemistry and Structural Biology, (Elsevier), pp. 135–170.Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64. https://doi.org/10.1038/NATURE08497.Gassler, J., Brandão, H.B., Imakaev, M., Flyamer, I.M., Ladstätter, S., Bickmore, W.A., Peters, J., Mirny, L.A., and Tachibana, K. (2017). A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618. https://doi.org/10.15252/embj.201798083.Gligoris, T., and Löwe, J. (2016). Structural Insights into Ring Formation of Cohesin and Related Smc Complexes. Trends Cell Biol. 26, 680–693. https://doi.org/10.1016/j.tcb.2016.04.002.Grimm, S.L., Hartig, S.M., and Edwards, D.P. (2016). Progesterone Receptor Signaling Mechanisms. J. Mol. Biol. 428, 3831–3849. https://doi.org/10.1016/j.jmb.2016.06.020.Guan, J., Zhou, W., Hafner, M., Blake, R.A., Chalouni, C., Chen, I.P., De Bruyn, T., Giltnane, J.M., Hartman, S.J., Heidersbach, A., et al. (2019). Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell 178, 949-963.e18. https://doi.org/10.1016/j.cell.2019.06.026.Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. (2015). CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell 162, 900–910. https://doi.org/10.1016/j.cell.2015.07.038.Haarhuis, J.H.I., van der Weide, R.H., Blomen, V.A., Yáñez-Cuna, J.O., Amendola, M., van Ruiten, M.S., Krijger, P.H.L., Teunissen, H., Medema, R.H., van Steensel, B., et al. (2017). The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell 169, 693-707.e14. https://doi.org/10.1016/j.cell.2017.04.013.Hakim, O., John, S., Ling, J.Q., Biddie, S.C., Hoffman, A.R., and Hager, G.L. (2009). Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J. Biol. Chem. 284, 6048–6052. https://doi.org/10.1074/jbc.C800212200.Hanker, A.B., Sudhan, D.R., and Arteaga, C.L. (2020). Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 37, 496–513. https://doi.org/10.1016/j.ccell.2020.03.009.Harvey, J.M., Clark, G.M., Osborne, C.K., and Allred, D.C. (1999). Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481. https://doi.org/10.1200/jco.1999.17.5.1474.Henriques, T., Scruggs, B.S., Inouye, M.O., Muse, G.W., Williams, L.H., Burkholder, A.B., Lavender, C.A., Fargo, D.C., and Adelman, K. (2018). Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41. https://doi.org/10.1101/gad.309351.117.Henríquez, I., Roach, M., Morgan, T.M., Bossi, A., Gómez, J.A., Abuchaibe, O., and Couñago, F. (2021). Current and Emerging Therapies for Metastatic Castration-Resistant Prostate Cancer (mCRPC). Biomedicines 9, 1247. https://doi.org/10.3390/biomedicines9091247.Hewitt, S.C., Grimm, S.A., Wu, S.-P., DeMayo, F.J., and Korach, K.S. (2020). Estrogen receptor α (ERα)-binding super-enhancers drive key mediators that control uterine estrogen responses in mice. J. Biol. Chem. 295, 8387–8400. https://doi.org/10.1074/jbc.RA120.013666.Huggins, C., and Hodges, C.V. (1941). Studies on Prostatic Cancer. I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate*. Cancer Res. 1, 293–297. .Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D., and Carroll, J.S. (2011). FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet. 43, 27–33. https://doi.org/10.1038/ng.730.Ittmann, M. (2018). Anatomy and Histology of the Human and Murine Prostate. Cold Spring Harb. Perspect. Med. 8, a030346. https://doi.org/10.1101/cshperspect.a030346.Jansen, M.P.H.M., Knijnenburg, T., Reijm, E.A., Simon, I., Kerkhoven, R., Droog, M., Velds, A., Van Laere, S., Dirix, L., Alexi, X., et al. (2013). Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res. 73, 6632–6641. https://doi.org/10.1158/0008-5472.CAN-13-0704.Jin, F., Li, Y., Dixon, J.R., Selvaraj, S., Ye, Z., Lee, A.Y., Yen, C.-A., Schmitt, A.D., Espinoza, C.A., and Ren, B. (2013). A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294. https://doi.org/10.1038/nature12644.John, S., Sabo, P.J., Thurman, R.E., Sung, M.-H., Biddie, S.C., Johnson, T.A., Hager, G.L., and Stamatoyannopoulos, J.A. (2011). Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268. https://doi.org/10.1038/ng.759.Jung, Y., Wang, J., Lee, E., McGee, S., Berry, J.E., Yumoto, K., Dai, J., Keller, E.T., Shiozawa, Y., and Taichman, R.S. (2015). Annexin 2–CXCL12 Interactions Regulate Metastatic Cell Targeting and Growth in the Bone Marrow. Mol. Cancer Res. 13, 197–207. https://doi.org/10.1158/1541-7786.MCR-14-0118.Kalinska, M., Meyer-Hoffert, U., Kantyka, T., and Potempa, J. (2016). Kallikreins – The melting pot of activity and function. Biochimie 122, 270–282. https://doi.org/10.1016/j.biochi.2015.09.023.Kornberg, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871. https://doi.org/10.1126/science.184.4139.868.L, V., A, P., Ssp, R., Kr, K.-K., S, J., L, B., Sc, H., L, E.K., M, D., N, P., et al. (2018). The Energetics and Physiological Impact of Cohesin Extrusion. Cell 173. https://doi.org/10.1016/j.cell.2018.03.072.Law, C.W., Alhamdoosh, M., Su, S., Dong, X., Tian, L., Smyth, G.K., and Ritchie, M.E. (2018). RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. https://doi.org/10.12688/f1000research.9005.3.Li, D., Stovall, D.B., Wang, W., and Sui, G. (2020). Advances of Zinc Signaling Studies in Prostate Cancer. Int. J. Mol. Sci. 21, 667. https://doi.org/10.3390/ijms21020667.Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., Merkurjev, D., Zhang, J., Ohgi, K., Song, X., et al. (2013). Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520. https://doi.org/10.1038/nature12210.Lieberman-Aiden, E., Van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. https://doi.org/10.1126/SCIENCE.1181369.Martin, L.-A., Ribas, R., Simigdala, N., Schuster, E., Pancholi, S., Tenev, T., Gellert, P., Buluwela, L., Harrod, A., Thornhill, A., et al. (2017). Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat. Commun. 8, 1865. https://doi.org/10.1038/s41467-017-01864-y.Matthey-Doret, C., Baudry, L., Breuer, A., Montagne, R., Guiglielmoni, N., Scolari, V., Jean, E., Campeas, A., Chanut, P.H., Oriol, E., et al. (2020). Computer vision for pattern detection in chromosome contact maps. Nat. Commun. 11, 5795. https://doi.org/10.1038/s41467-020-19562-7.Mazzone, E., Preisser, F., Nazzani, S., Tian, Z., Bandini, M., Gandaglia, G., Fossati, N., Montorsi, F., Graefen, M., Shariat, S.F., et al. (2019). The Effect of Lymph Node Dissection in Metastatic Prostate Cancer Patients Treated with Radical Prostatectomy: A Contemporary Analysis of Survival and Early Postoperative Outcomes. Eur. Urol. Oncol. 2, 541–548. https://doi.org/10.1016/j.euo.2018.10.010.McNeal, J.E. (1981). The zonal anatomy of the prostate. The Prostate 2, 35–49. https://doi.org/10.1002/pros.2990020105.Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R., and Furlong, E.E.M. (2018). The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 32, 42–57. https://doi.org/10.1101/gad.308619.117.Mittal, V. (2018). Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. Mech. Dis. 13, 395–412. https://doi.org/10.1146/annurev-pathol-020117-043854.Mohammed, H., D’Santos, C., Serandour, A.A., Ali, H.R., Brown, G.D., Atkins, A., Rueda, O.M., Holmes, K.A., Theodorou, V., Robinson, J.L.L., et al. (2013). Endogenous Purification Reveals GREB1 as a Key Estrogen Receptor Regulatory Factor. Cell Rep. 3, 342–349. https://doi.org/10.1016/j.celrep.2013.01.010.Moore, J.E., Purcaro, M.J., Pratt, H.E., Epstein, C.B., Shoresh, N., Adrian, J., Kawli, T., Davis, C.A., Dobin, A., Kaul, R., et al. (2020). Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710. https://doi.org/10.1038/s41586-020-2493-4.Nadal, R., Schweizer, M., Kryvenko, O.N., Epstein, J.I., and Eisenberger, M.A. (2014). Small cell carcinoma of the prostate. Nat. Rev. Urol. 11, 213–219. https://doi.org/10.1038/nrurol.2014.21.Narendra, V., Rocha, P.P., An, D., Raviram, R., Skok, J.A., Mazzoni, E.O., and Reinberg, D. (2015). CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021. https://doi.org/10.1126/science.1262088.Nasmyth, K. (2001). Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745. https://doi.org/10.1146/annurev.genet.35.102401.091334.Nelson, W.G. (2016). Commentary on Huggins and Hodges: “Studies on Prostatic Cancer.” Cancer Res. 76, 186–187. https://doi.org/10.1158/0008-5472.CAN-15-3172.Nichols, M.H., and Corces, V.G. (2015). A CTCF Code for 3D Genome Architecture. Cell 162, 703–705. https://doi.org/10.1016/j.cell.2015.07.053.Niu, L., Shen, W., Shi, Z., Tan, Y., He, N., Wan, J., Sun, J., Zhang, Y., Huang, Y., Wang, W., et al. (2021). Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 2021 537 53, 1075–1087. https://doi.org/10.1038/s41588-021-00878-z.Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385. https://doi.org/10.1038/nature11049.Nora, E.P., Goloborodko, A., Valton, A.-L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-944.e22. https://doi.org/10.1016/j.cell.2017.05.004.Oakley, R.H., and Cidlowski, J.A. (2013). The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033–1044. https://doi.org/10.1016/j.jaci.2013.09.007.O’Shaughnessy, P.J., Antignac, J.P., Le Bizec, B., Morvan, M.-L., Svechnikov, K., Söder, O., Savchuk, I., Monteiro, A., Soffientini, U., Johnston, Z.C., et al. (2019). Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 17, e3000002. https://doi.org/10.1371/journal.pbio.3000002.Peluso-Iltis, C., Osz, J., and Rochel, N. (2020). Chapter Ten - DNA recognition by retinoic acid nuclear receptors. In Methods in Enzymology, E. Pohl, ed. (Academic Press), pp. 235–260.Phanstiel, D.H., Van Bortle, K., Spacek, D., Hess, G.T., Shamim, M.S., Machol, I., Love, M.I., Aiden, E.L., Bassik, M.C., and Snyder, M.P. (2017). Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Mol. Cell 67, 1037-1048.e6. https://doi.org/10.1016/j.molcel.2017.08.006.Qiu, H., Cao, S., and Xu, R. (2021). Cancer incidence, mortality, and burden in China: a time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun. 41, 1037–1048. https://doi.org/10.1002/cac2.12197.Racko, D., Benedetti, F., Dorier, J., and Stasiak, A. (2018). Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660. https://doi.org/10.1093/nar/gkx1123.Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680. https://doi.org/10.1016/J.CELL.2014.11.021.Razavi, P., Chang, M.T., Xu, G., Bandlamudi, C., Ross, D.S., Vasan, N., Cai, Y., Bielski, C.M., Donoghue, M.T.A., Jonsson, P., et al. (2018). The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 34, 427-438.e6. https://doi.org/10.1016/j.ccell.2018.08.008.Rebello, R.J., Oing, C., Knudsen, K.E., Loeb, S., Johnson, D.C., Reiter, R.E., Gillessen, S., Van der Kwast, T., and Bristow, R.G. (2021). Prostate cancer. Nat. Rev. Dis. Primer 7, 9. https://doi.org/10.1038/s41572-020-00243-0.Reddy, T.E., Pauli, F., Sprouse, R.O., Neff, N.F., Newberry, K.M., Garabedian, M.J., and Myers, R.M. (2009). Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171. https://doi.org/10.1101/gr.097022.109.Rhie, S.K., Perez, A.A., Lay, F.D., Schreiner, S., Shi, J., Polin, J., and Farnham, P.J. (2019). A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat. Commun. 10, 4154. https://doi.org/10.1038/s41467-019-12079-8.Ross-Innes, C.S., Stark, R., Teschendorff, A.E., Holmes, K.A., Ali, H.R., Dunning, M.J., Brown, G.D., Gojis, O., Ellis, I.O., Green, A.R., et al. (2012). Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393. https://doi.org/10.1038/nature10730.Rowley, M.J., and Corces, V.G. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800. https://doi.org/10.1038/s41576-018-0060-8.Sanborn, A.L., Rao, S.S.P., Huang, S.-C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J., et al. (2015). Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. 112, E6456–E6465. https://doi.org/10.1073/pnas.1518552112.Sartor, O., and de Bono, J.S. (2018). Metastatic Prostate Cancer. N. Engl. J. Med. 378, 645–657. https://doi.org/10.1056/NEJMra1701695.Severson, T.M., Nevedomskaya, E., Peeters, J., Kuilman, T., Krijgsman, O., van Rossum, A., Droog, M., Kim, Y., Koornstra, R., Beumer, I., et al. (2016). Neoadjuvant tamoxifen synchronizes ERα binding and gene expression profiles related to outcome and proliferation. Oncotarget 7, 33901–33918. https://doi.org/10.18632/oncotarget.8983.Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012). Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell 148, 458–472. https://doi.org/10.1016/j.cell.2012.01.010.Sharifi, N. (2012). The 5α-androstanedione pathway to dihydrotestosterone in castration-resistant prostate cancer. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 60, 504–507. https://doi.org/2016051016443993000.Sharifi, N. (2013). Mechanisms of Androgen Receptor Activation in Castration-Resistant Prostate Cancer. Endocrinology 154, 4010–4017. https://doi.org/2020071612030464100.Shin, H., Shi, Y., Dai, C., Tjong, H., Gong, K., Alber, F., and Zhou, X.J. (2016). TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 44, e70. https://doi.org/10.1093/nar/gkv1505.Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018: Cancer Statistics, 2018. CA. Cancer J. Clin. 68, 7–30. https://doi.org/10.3322/caac.21442.Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA. Cancer J. Clin. 70, 7–30. https://doi.org/10.3322/caac.21590.Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2022). Cancer statistics, 2022. CA. Cancer J. Clin. 72, 7–33. https://doi.org/10.3322/caac.21708.Siersbæk, R., Kumar, S., and Carroll, J.S. (2018). Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev. 32, 1141–1154. https://doi.org/10.1101/gad.316646.118.Stigler, J., Çamdere, G.Ö., Koshland, D.E., and Greene, E.C. (2016). Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin. Cell Rep. 15, 988–998. https://doi.org/10.1016/j.celrep.2016.04.003.Taberlay, P.C., Achinger-Kawecka, J., Lun, A.T.L., Buske, F.A., Sabir, K., Gould, C.M., Zotenko, E., Bert, S.A., Giles, K.A., Bauer, D.C., et al. (2016). Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719–731. https://doi.org/10.1101/gr.201517.115.Taichman, R.S., Cooper, C., Keller, E.T., Pienta, K.J., Taichman, N.S., and McCauley, L.K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837. .Takata, R., Takahashi, A., Fujita, M., Momozawa, Y., Saunders, E.J., Yamada, H., Maejima, K., Nakano, K., Nishida, Y., Hishida, A., et al. (2019). 12 new susceptibility loci for prostate cancer identified by genome-wide association study in Japanese population. Nat. Commun. 10, 4422. https://doi.org/10.1038/s41467-019-12267-6.Tan, M.E., Li, J., Xu, H.E., Melcher, K., and Yong, E. (2015). Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36, 3–23. https://doi.org/10.1038/aps.2014.18.Terakawa, T., Bisht, S., Eeftens, J.M., Dekker, C., Haering, C.H., and Greene, E.C. (2017). The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672–676. https://doi.org/10.1126/science.aan6516.The Breast and Prostate Cancer Cohort Consortium (BPC3), The PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium, The COGS (Collaborative Oncological Gene-environment Study) Consortium, The GAME-ON/ELLIPSE Consortium, Al Olama, A.A., Kote-Jarai, Z., Berndt, S.I., Conti, D.V., Schumacher, F., Han, Y., et al. (2014). A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109. https://doi.org/10.1038/ng.3094.The Profile Study, Australian Prostate Cancer BioResource (APCB), The IMPACT Study, Canary PASS Investigators, Breast and Prostate Cancer Cohort Consortium (BPC3), The PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) Consortium, Cancer of the Prostate in Sweden (CAPS), Prostate Cancer Genome-wide Association Study of Uncommon Susceptibility Loci (PEGASUS), The Genetic Associations and Mechanisms in Oncology (GAME-ON)/Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium, Schumacher, F.R., et al. (2018). Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936. https://doi.org/10.1038/s41588-018-0142-8.The UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons’ Section of Oncology, The UK ProtecT Study Collaborators, The Australian Prostate Cancer BioResource, The PRACTICAL Consortium, Kote-Jarai, Z., Olama, A.A.A., Giles, G.G., Severi, G., Schleutker, J., Weischer, M., Campa, D., et al. (2011). Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat. Genet. 43, 785–791. https://doi.org/10.1038/ng.882.Thomas, G., Jacobs, K.B., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu, K., Chatterjee, N., Welch, R., Hutchinson, A., et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315. https://doi.org/10.1038/ng.91.Truong, T.H., and Lange, C.A. (2018). Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 159, 3897–3907. https://doi.org/2019041122243246400.Verze, P., Cai, T., and Lorenzetti, S. (2016). The role of the prostate in male fertility, health and disease. Nat. Rev. Urol. 13, 379–386. https://doi.org/10.1038/nrurol.2016.89.Wang, Z., Chu, T., Choate, L.A., and Danko, C.G. (2019). Identification of regulatory elements from nascent transcription using dREG. Genome Res. 29, 293–303. https://doi.org/10.1101/gr.238279.118.Yin, J.J., Pollock, C.B., and Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Res. 15, 57–62. https://doi.org/10.1038/sj.cr.7290266.Yu, J., Yu, J., Mani, R.-S., Cao, Q., Brenner, C.J., Cao, X., Wang, X., Wu, L., Li, J., Hu, M., et al. (2010). An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454. https://doi.org/10.1016/j.ccr.2010.03.018.Zhang, Y., McCord, R.P., Ho, Y.-J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., and Dekker, J. (2012). Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations. Cell 148, 908–921. https://doi.org/10.1016/j.cell.2012.02.002.Zhang, Z., Burch, P.E., Cooney, A.J., Lanz, R.B., Pereira, F.A., Wu, J., Gibbs, R.A., Weinstock, G., and Wheeler, D.A. (2004). Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res. 14, 580–590. https://doi.org/10.1101/gr.2160004.Zhang, Z., Chng, K.R., Lingadahalli, S., Chen, Z., Liu, M.H., Do, H.H., Cai, S., Rinaldi, N., Poh, H.M., Li, G., et al. (2019). An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res. 29, 223–235. https://doi.org/10.1101/gr.230243.117.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/378342
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
Fang C. The Dynamic Epigenetic Study of Prostate Cancer[D]. 澳门. 澳门大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11653013-方超-生物系.pdf(5876KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[方超]的文章
百度学术
百度学术中相似的文章
[方超]的文章
必应学术
必应学术中相似的文章
[方超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。